Properties

Label 1512.2.bs.a.1097.14
Level $1512$
Weight $2$
Character 1512.1097
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.14
Character \(\chi\) \(=\) 1512.1097
Dual form 1512.2.bs.a.521.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.311798 + 0.540051i) q^{5} +(2.62086 + 0.362103i) q^{7} +(4.50253 + 2.59954i) q^{11} +(2.74023 + 1.58207i) q^{13} +(0.437594 + 0.757935i) q^{17} +(-1.41874 - 0.819107i) q^{19} +(-7.14886 + 4.12740i) q^{23} +(2.30556 - 3.99335i) q^{25} +(-4.96435 + 2.86617i) q^{29} -4.64486i q^{31} +(0.621624 + 1.52830i) q^{35} +(1.24291 - 2.15278i) q^{37} +(-3.52382 + 6.10344i) q^{41} +(-1.56398 - 2.70890i) q^{43} +9.46768 q^{47} +(6.73776 + 1.89804i) q^{49} +(-1.15189 + 0.665044i) q^{53} +3.24212i q^{55} +6.36667 q^{59} +11.1541i q^{61} +1.97315i q^{65} +12.0990 q^{67} -10.5861i q^{71} +(-11.6719 + 6.73878i) q^{73} +(10.8592 + 8.44339i) q^{77} +9.69679 q^{79} +(-0.192030 - 0.332606i) q^{83} +(-0.272882 + 0.472646i) q^{85} +(0.0198983 - 0.0344648i) q^{89} +(6.60888 + 5.13864i) q^{91} -1.02159i q^{95} +(-5.94681 + 3.43339i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.311798 + 0.540051i 0.139440 + 0.241518i 0.927285 0.374356i \(-0.122136\pi\)
−0.787845 + 0.615874i \(0.788803\pi\)
\(6\) 0 0
\(7\) 2.62086 + 0.362103i 0.990590 + 0.136862i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.50253 + 2.59954i 1.35756 + 0.783790i 0.989295 0.145930i \(-0.0466173\pi\)
0.368269 + 0.929719i \(0.379951\pi\)
\(12\) 0 0
\(13\) 2.74023 + 1.58207i 0.760004 + 0.438788i 0.829297 0.558808i \(-0.188741\pi\)
−0.0692932 + 0.997596i \(0.522074\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.437594 + 0.757935i 0.106132 + 0.183826i 0.914200 0.405263i \(-0.132820\pi\)
−0.808068 + 0.589089i \(0.799487\pi\)
\(18\) 0 0
\(19\) −1.41874 0.819107i −0.325480 0.187916i 0.328352 0.944555i \(-0.393507\pi\)
−0.653833 + 0.756639i \(0.726840\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.14886 + 4.12740i −1.49064 + 0.860622i −0.999943 0.0107077i \(-0.996592\pi\)
−0.490698 + 0.871330i \(0.663258\pi\)
\(24\) 0 0
\(25\) 2.30556 3.99335i 0.461113 0.798671i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.96435 + 2.86617i −0.921856 + 0.532234i −0.884227 0.467058i \(-0.845314\pi\)
−0.0376295 + 0.999292i \(0.511981\pi\)
\(30\) 0 0
\(31\) 4.64486i 0.834241i −0.908851 0.417120i \(-0.863039\pi\)
0.908851 0.417120i \(-0.136961\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.621624 + 1.52830i 0.105074 + 0.258329i
\(36\) 0 0
\(37\) 1.24291 2.15278i 0.204333 0.353916i −0.745587 0.666408i \(-0.767831\pi\)
0.949920 + 0.312493i \(0.101164\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.52382 + 6.10344i −0.550329 + 0.953198i 0.447922 + 0.894073i \(0.352164\pi\)
−0.998251 + 0.0591249i \(0.981169\pi\)
\(42\) 0 0
\(43\) −1.56398 2.70890i −0.238505 0.413103i 0.721780 0.692122i \(-0.243324\pi\)
−0.960286 + 0.279019i \(0.909991\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.46768 1.38100 0.690502 0.723331i \(-0.257390\pi\)
0.690502 + 0.723331i \(0.257390\pi\)
\(48\) 0 0
\(49\) 6.73776 + 1.89804i 0.962537 + 0.271149i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.15189 + 0.665044i −0.158224 + 0.0913508i −0.577021 0.816729i \(-0.695785\pi\)
0.418797 + 0.908080i \(0.362452\pi\)
\(54\) 0 0
\(55\) 3.24212i 0.437168i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.36667 0.828870 0.414435 0.910079i \(-0.363979\pi\)
0.414435 + 0.910079i \(0.363979\pi\)
\(60\) 0 0
\(61\) 11.1541i 1.42814i 0.700075 + 0.714069i \(0.253150\pi\)
−0.700075 + 0.714069i \(0.746850\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.97315i 0.244739i
\(66\) 0 0
\(67\) 12.0990 1.47813 0.739065 0.673634i \(-0.235267\pi\)
0.739065 + 0.673634i \(0.235267\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.5861i 1.25634i −0.778076 0.628171i \(-0.783804\pi\)
0.778076 0.628171i \(-0.216196\pi\)
\(72\) 0 0
\(73\) −11.6719 + 6.73878i −1.36609 + 0.788714i −0.990427 0.138041i \(-0.955920\pi\)
−0.375666 + 0.926755i \(0.622586\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.8592 + 8.44339i 1.23752 + 0.962214i
\(78\) 0 0
\(79\) 9.69679 1.09097 0.545487 0.838119i \(-0.316345\pi\)
0.545487 + 0.838119i \(0.316345\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.192030 0.332606i −0.0210781 0.0365083i 0.855294 0.518143i \(-0.173377\pi\)
−0.876372 + 0.481635i \(0.840043\pi\)
\(84\) 0 0
\(85\) −0.272882 + 0.472646i −0.0295982 + 0.0512656i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.0198983 0.0344648i 0.00210921 0.00365326i −0.864969 0.501826i \(-0.832662\pi\)
0.867078 + 0.498172i \(0.165995\pi\)
\(90\) 0 0
\(91\) 6.60888 + 5.13864i 0.692799 + 0.538675i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.02159i 0.104812i
\(96\) 0 0
\(97\) −5.94681 + 3.43339i −0.603807 + 0.348608i −0.770538 0.637394i \(-0.780012\pi\)
0.166731 + 0.986002i \(0.446679\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.46299 + 7.73012i −0.444084 + 0.769176i −0.997988 0.0634046i \(-0.979804\pi\)
0.553904 + 0.832581i \(0.313137\pi\)
\(102\) 0 0
\(103\) 7.68060 4.43439i 0.756792 0.436934i −0.0713510 0.997451i \(-0.522731\pi\)
0.828143 + 0.560517i \(0.189398\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.64326 1.52609i −0.255534 0.147532i 0.366762 0.930315i \(-0.380466\pi\)
−0.622295 + 0.782782i \(0.713800\pi\)
\(108\) 0 0
\(109\) −5.55069 9.61408i −0.531660 0.920862i −0.999317 0.0369519i \(-0.988235\pi\)
0.467657 0.883910i \(-0.345098\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.13836 + 1.81193i 0.295232 + 0.170452i 0.640299 0.768126i \(-0.278810\pi\)
−0.345067 + 0.938578i \(0.612144\pi\)
\(114\) 0 0
\(115\) −4.45801 2.57383i −0.415711 0.240011i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.872420 + 2.14489i 0.0799746 + 0.196622i
\(120\) 0 0
\(121\) 8.01518 + 13.8827i 0.728653 + 1.26206i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.99347 0.536072
\(126\) 0 0
\(127\) −10.1408 −0.899852 −0.449926 0.893066i \(-0.648550\pi\)
−0.449926 + 0.893066i \(0.648550\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.8788 18.8426i −0.950484 1.64629i −0.744380 0.667756i \(-0.767255\pi\)
−0.206103 0.978530i \(-0.566078\pi\)
\(132\) 0 0
\(133\) −3.42170 2.66049i −0.296699 0.230694i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.340450 + 0.196559i 0.0290866 + 0.0167932i 0.514473 0.857507i \(-0.327988\pi\)
−0.485386 + 0.874300i \(0.661321\pi\)
\(138\) 0 0
\(139\) 15.6647 + 9.04400i 1.32866 + 0.767102i 0.985092 0.172026i \(-0.0550312\pi\)
0.343568 + 0.939128i \(0.388365\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.22532 + 14.2467i 0.687836 + 1.19137i
\(144\) 0 0
\(145\) −3.09575 1.78733i −0.257088 0.148430i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.87748 5.12542i 0.727272 0.419891i −0.0901515 0.995928i \(-0.528735\pi\)
0.817423 + 0.576038i \(0.195402\pi\)
\(150\) 0 0
\(151\) −11.9006 + 20.6124i −0.968457 + 1.67742i −0.268432 + 0.963299i \(0.586505\pi\)
−0.700025 + 0.714118i \(0.746828\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.50846 1.44826i 0.201484 0.116327i
\(156\) 0 0
\(157\) 11.5080i 0.918442i −0.888322 0.459221i \(-0.848129\pi\)
0.888322 0.459221i \(-0.151871\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −20.2307 + 8.22868i −1.59440 + 0.648511i
\(162\) 0 0
\(163\) 10.4614 18.1197i 0.819399 1.41924i −0.0867261 0.996232i \(-0.527640\pi\)
0.906125 0.423009i \(-0.139026\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.69358 + 11.5936i −0.517965 + 0.897141i 0.481817 + 0.876272i \(0.339977\pi\)
−0.999782 + 0.0208697i \(0.993357\pi\)
\(168\) 0 0
\(169\) −1.49408 2.58782i −0.114929 0.199063i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.88865 0.447706 0.223853 0.974623i \(-0.428136\pi\)
0.223853 + 0.974623i \(0.428136\pi\)
\(174\) 0 0
\(175\) 7.48856 9.63115i 0.566082 0.728046i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.4333 8.33310i 1.07880 0.622845i 0.148227 0.988953i \(-0.452643\pi\)
0.930572 + 0.366109i \(0.119310\pi\)
\(180\) 0 0
\(181\) 0.462705i 0.0343926i −0.999852 0.0171963i \(-0.994526\pi\)
0.999852 0.0171963i \(-0.00547402\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.55015 0.113969
\(186\) 0 0
\(187\) 4.55017i 0.332741i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.6385i 0.986850i −0.869788 0.493425i \(-0.835745\pi\)
0.869788 0.493425i \(-0.164255\pi\)
\(192\) 0 0
\(193\) −11.4787 −0.826251 −0.413126 0.910674i \(-0.635563\pi\)
−0.413126 + 0.910674i \(0.635563\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.78184i 0.340692i −0.985384 0.170346i \(-0.945511\pi\)
0.985384 0.170346i \(-0.0544885\pi\)
\(198\) 0 0
\(199\) 7.87833 4.54856i 0.558480 0.322439i −0.194055 0.980991i \(-0.562164\pi\)
0.752535 + 0.658552i \(0.228831\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −14.0487 + 5.71420i −0.986024 + 0.401058i
\(204\) 0 0
\(205\) −4.39489 −0.306952
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.25860 7.37611i −0.294573 0.510216i
\(210\) 0 0
\(211\) 1.47477 2.55437i 0.101527 0.175850i −0.810787 0.585341i \(-0.800960\pi\)
0.912314 + 0.409491i \(0.134294\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.975294 1.68926i 0.0665145 0.115207i
\(216\) 0 0
\(217\) 1.68192 12.1735i 0.114176 0.826391i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.76923i 0.186278i
\(222\) 0 0
\(223\) −20.4564 + 11.8105i −1.36986 + 0.790891i −0.990910 0.134524i \(-0.957049\pi\)
−0.378954 + 0.925416i \(0.623716\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.02534 15.6323i 0.599033 1.03755i −0.393932 0.919140i \(-0.628885\pi\)
0.992964 0.118415i \(-0.0377814\pi\)
\(228\) 0 0
\(229\) −10.5212 + 6.07439i −0.695258 + 0.401407i −0.805579 0.592489i \(-0.798145\pi\)
0.110321 + 0.993896i \(0.464812\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.39111 + 1.95786i 0.222159 + 0.128264i 0.606950 0.794740i \(-0.292393\pi\)
−0.384791 + 0.923004i \(0.625726\pi\)
\(234\) 0 0
\(235\) 2.95201 + 5.11303i 0.192568 + 0.333537i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.3996 6.00423i −0.672696 0.388381i 0.124401 0.992232i \(-0.460299\pi\)
−0.797097 + 0.603851i \(0.793632\pi\)
\(240\) 0 0
\(241\) 24.4958 + 14.1427i 1.57792 + 0.911010i 0.995150 + 0.0983690i \(0.0313626\pi\)
0.582765 + 0.812641i \(0.301971\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.07578 + 4.23054i 0.0687294 + 0.270279i
\(246\) 0 0
\(247\) −2.59178 4.48909i −0.164911 0.285634i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0425 −0.760117 −0.380059 0.924962i \(-0.624096\pi\)
−0.380059 + 0.924962i \(0.624096\pi\)
\(252\) 0 0
\(253\) −42.9173 −2.69819
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.32521 12.6876i −0.456934 0.791433i 0.541863 0.840467i \(-0.317719\pi\)
−0.998797 + 0.0490340i \(0.984386\pi\)
\(258\) 0 0
\(259\) 4.03702 5.19207i 0.250848 0.322620i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.96349 2.86567i −0.306062 0.176705i 0.339101 0.940750i \(-0.389877\pi\)
−0.645163 + 0.764045i \(0.723210\pi\)
\(264\) 0 0
\(265\) −0.718314 0.414719i −0.0441257 0.0254760i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.61724 + 2.80114i 0.0986047 + 0.170788i 0.911107 0.412169i \(-0.135229\pi\)
−0.812503 + 0.582957i \(0.801895\pi\)
\(270\) 0 0
\(271\) −20.6677 11.9325i −1.25548 0.724849i −0.283284 0.959036i \(-0.591424\pi\)
−0.972192 + 0.234187i \(0.924757\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.7617 11.9868i 1.25198 0.722831i
\(276\) 0 0
\(277\) 3.83423 6.64107i 0.230376 0.399023i −0.727543 0.686063i \(-0.759338\pi\)
0.957919 + 0.287039i \(0.0926710\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.78880 + 5.07422i −0.524296 + 0.302702i −0.738690 0.674045i \(-0.764555\pi\)
0.214395 + 0.976747i \(0.431222\pi\)
\(282\) 0 0
\(283\) 13.6685i 0.812510i −0.913760 0.406255i \(-0.866834\pi\)
0.913760 0.406255i \(-0.133166\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.4455 + 14.7203i −0.675607 + 0.868909i
\(288\) 0 0
\(289\) 8.11702 14.0591i 0.477472 0.827006i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.70903 + 4.69218i −0.158263 + 0.274120i −0.934242 0.356639i \(-0.883923\pi\)
0.775979 + 0.630758i \(0.217256\pi\)
\(294\) 0 0
\(295\) 1.98512 + 3.43833i 0.115578 + 0.200187i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.1194 −1.51052
\(300\) 0 0
\(301\) −3.11807 7.66595i −0.179723 0.441858i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.02379 + 3.47784i −0.344921 + 0.199140i
\(306\) 0 0
\(307\) 3.56336i 0.203372i −0.994817 0.101686i \(-0.967576\pi\)
0.994817 0.101686i \(-0.0324236\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.2647 −0.638762 −0.319381 0.947626i \(-0.603475\pi\)
−0.319381 + 0.947626i \(0.603475\pi\)
\(312\) 0 0
\(313\) 11.4280i 0.645950i 0.946407 + 0.322975i \(0.104683\pi\)
−0.946407 + 0.322975i \(0.895317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.4687i 1.09347i 0.837305 + 0.546736i \(0.184130\pi\)
−0.837305 + 0.546736i \(0.815870\pi\)
\(318\) 0 0
\(319\) −29.8028 −1.66864
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.43375i 0.0797758i
\(324\) 0 0
\(325\) 12.6356 7.29515i 0.700895 0.404662i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.8134 + 3.42828i 1.36801 + 0.189007i
\(330\) 0 0
\(331\) 26.9675 1.48227 0.741135 0.671356i \(-0.234288\pi\)
0.741135 + 0.671356i \(0.234288\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.77245 + 6.53408i 0.206111 + 0.356995i
\(336\) 0 0
\(337\) 0.993296 1.72044i 0.0541083 0.0937183i −0.837703 0.546127i \(-0.816102\pi\)
0.891811 + 0.452408i \(0.149435\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0745 20.9136i 0.653869 1.13254i
\(342\) 0 0
\(343\) 16.9714 + 7.41426i 0.916370 + 0.400332i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.3724i 1.84521i −0.385752 0.922603i \(-0.626058\pi\)
0.385752 0.922603i \(-0.373942\pi\)
\(348\) 0 0
\(349\) −25.3935 + 14.6609i −1.35928 + 0.784781i −0.989527 0.144348i \(-0.953891\pi\)
−0.369754 + 0.929130i \(0.620558\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.586526 + 1.01589i −0.0312177 + 0.0540706i −0.881212 0.472721i \(-0.843272\pi\)
0.849994 + 0.526792i \(0.176605\pi\)
\(354\) 0 0
\(355\) 5.71704 3.30074i 0.303429 0.175185i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.69591 + 3.28854i 0.300619 + 0.173562i 0.642721 0.766101i \(-0.277806\pi\)
−0.342102 + 0.939663i \(0.611139\pi\)
\(360\) 0 0
\(361\) −8.15813 14.1303i −0.429375 0.743699i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.27856 4.20228i −0.380977 0.219957i
\(366\) 0 0
\(367\) −8.24124 4.75808i −0.430189 0.248370i 0.269238 0.963074i \(-0.413228\pi\)
−0.699427 + 0.714704i \(0.746562\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.25975 + 1.32588i −0.169238 + 0.0688362i
\(372\) 0 0
\(373\) −10.3152 17.8664i −0.534098 0.925085i −0.999206 0.0398315i \(-0.987318\pi\)
0.465108 0.885254i \(-0.346015\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.1380 −0.934153
\(378\) 0 0
\(379\) −7.98265 −0.410041 −0.205020 0.978758i \(-0.565726\pi\)
−0.205020 + 0.978758i \(0.565726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.0484 + 24.3326i 0.717840 + 1.24334i 0.961854 + 0.273564i \(0.0882026\pi\)
−0.244013 + 0.969772i \(0.578464\pi\)
\(384\) 0 0
\(385\) −1.17398 + 8.49714i −0.0598318 + 0.433054i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −28.4400 16.4198i −1.44196 0.832519i −0.443984 0.896035i \(-0.646435\pi\)
−0.997981 + 0.0635162i \(0.979769\pi\)
\(390\) 0 0
\(391\) −6.25660 3.61225i −0.316410 0.182679i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.02344 + 5.23676i 0.152126 + 0.263490i
\(396\) 0 0
\(397\) 9.24672 + 5.33859i 0.464079 + 0.267936i 0.713758 0.700392i \(-0.246992\pi\)
−0.249679 + 0.968329i \(0.580325\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.3658 7.13943i 0.617521 0.356526i −0.158382 0.987378i \(-0.550628\pi\)
0.775903 + 0.630852i \(0.217294\pi\)
\(402\) 0 0
\(403\) 7.34851 12.7280i 0.366055 0.634026i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.1925 6.46198i 0.554791 0.320309i
\(408\) 0 0
\(409\) 8.13148i 0.402076i −0.979583 0.201038i \(-0.935569\pi\)
0.979583 0.201038i \(-0.0644314\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.6861 + 2.30539i 0.821071 + 0.113441i
\(414\) 0 0
\(415\) 0.119750 0.207412i 0.00587827 0.0101815i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.53415 2.65723i 0.0749481 0.129814i −0.826116 0.563501i \(-0.809454\pi\)
0.901064 + 0.433687i \(0.142788\pi\)
\(420\) 0 0
\(421\) 4.25752 + 7.37424i 0.207499 + 0.359398i 0.950926 0.309418i \(-0.100134\pi\)
−0.743427 + 0.668817i \(0.766801\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.03560 0.195756
\(426\) 0 0
\(427\) −4.03894 + 29.2333i −0.195458 + 1.41470i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 19.8414 11.4554i 0.955727 0.551789i 0.0608716 0.998146i \(-0.480612\pi\)
0.894855 + 0.446356i \(0.147279\pi\)
\(432\) 0 0
\(433\) 32.7273i 1.57278i 0.617733 + 0.786388i \(0.288051\pi\)
−0.617733 + 0.786388i \(0.711949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.5231 0.646899
\(438\) 0 0
\(439\) 6.43498i 0.307125i 0.988139 + 0.153562i \(0.0490746\pi\)
−0.988139 + 0.153562i \(0.950925\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.5373i 1.21331i −0.794964 0.606656i \(-0.792510\pi\)
0.794964 0.606656i \(-0.207490\pi\)
\(444\) 0 0
\(445\) 0.0248170 0.00117644
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.1008i 1.89247i −0.323474 0.946237i \(-0.604851\pi\)
0.323474 0.946237i \(-0.395149\pi\)
\(450\) 0 0
\(451\) −31.7322 + 18.3206i −1.49421 + 0.862684i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.714485 + 5.17135i −0.0334956 + 0.242436i
\(456\) 0 0
\(457\) −38.4715 −1.79962 −0.899810 0.436283i \(-0.856295\pi\)
−0.899810 + 0.436283i \(0.856295\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0830 20.9283i −0.562759 0.974728i −0.997254 0.0740533i \(-0.976407\pi\)
0.434495 0.900674i \(-0.356927\pi\)
\(462\) 0 0
\(463\) −8.65455 + 14.9901i −0.402211 + 0.696650i −0.993992 0.109449i \(-0.965091\pi\)
0.591781 + 0.806098i \(0.298425\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.46858 + 9.47185i −0.253056 + 0.438305i −0.964366 0.264573i \(-0.914769\pi\)
0.711310 + 0.702878i \(0.248102\pi\)
\(468\) 0 0
\(469\) 31.7098 + 4.38110i 1.46422 + 0.202300i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.2625i 0.747751i
\(474\) 0 0
\(475\) −6.54197 + 3.77701i −0.300166 + 0.173301i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.756744 + 1.31072i −0.0345765 + 0.0598883i −0.882796 0.469757i \(-0.844342\pi\)
0.848219 + 0.529645i \(0.177675\pi\)
\(480\) 0 0
\(481\) 6.81173 3.93275i 0.310588 0.179318i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.70841 2.14105i −0.168390 0.0972201i
\(486\) 0 0
\(487\) −0.0853077 0.147757i −0.00386566 0.00669552i 0.864086 0.503344i \(-0.167897\pi\)
−0.867952 + 0.496649i \(0.834564\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.5139 13.5757i −1.06117 0.612665i −0.135412 0.990789i \(-0.543236\pi\)
−0.925755 + 0.378125i \(0.876569\pi\)
\(492\) 0 0
\(493\) −4.34474 2.50844i −0.195677 0.112974i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.83327 27.7447i 0.171946 1.24452i
\(498\) 0 0
\(499\) −11.1327 19.2824i −0.498369 0.863200i 0.501629 0.865083i \(-0.332734\pi\)
−0.999998 + 0.00188245i \(0.999401\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −32.2005 −1.43575 −0.717876 0.696171i \(-0.754885\pi\)
−0.717876 + 0.696171i \(0.754885\pi\)
\(504\) 0 0
\(505\) −5.56621 −0.247693
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.60909 + 7.98317i 0.204294 + 0.353848i 0.949908 0.312531i \(-0.101177\pi\)
−0.745613 + 0.666379i \(0.767843\pi\)
\(510\) 0 0
\(511\) −33.0305 + 13.4349i −1.46118 + 0.594326i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.78959 + 2.76527i 0.211055 + 0.121853i
\(516\) 0 0
\(517\) 42.6285 + 24.6116i 1.87480 + 1.08242i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.44581 12.8965i −0.326207 0.565007i 0.655549 0.755153i \(-0.272437\pi\)
−0.981756 + 0.190146i \(0.939104\pi\)
\(522\) 0 0
\(523\) −29.3725 16.9582i −1.28437 0.741532i −0.306727 0.951798i \(-0.599234\pi\)
−0.977644 + 0.210266i \(0.932567\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.52050 2.03256i 0.153355 0.0885398i
\(528\) 0 0
\(529\) 22.5708 39.0938i 0.981340 1.69973i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.3122 + 11.1499i −0.836504 + 0.482956i
\(534\) 0 0
\(535\) 1.90333i 0.0822880i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.4029 + 26.0610i 1.09418 + 1.12253i
\(540\) 0 0
\(541\) −2.65164 + 4.59278i −0.114003 + 0.197459i −0.917381 0.398011i \(-0.869701\pi\)
0.803378 + 0.595470i \(0.203034\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.46139 5.99531i 0.148270 0.256811i
\(546\) 0 0
\(547\) −4.13892 7.16882i −0.176967 0.306517i 0.763873 0.645367i \(-0.223295\pi\)
−0.940840 + 0.338850i \(0.889962\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.39080 0.400061
\(552\) 0 0
\(553\) 25.4139 + 3.51124i 1.08071 + 0.149313i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.96801 + 4.02299i −0.295244 + 0.170459i −0.640304 0.768121i \(-0.721192\pi\)
0.345060 + 0.938581i \(0.387858\pi\)
\(558\) 0 0
\(559\) 9.89735i 0.418613i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.9156 1.26079 0.630396 0.776274i \(-0.282892\pi\)
0.630396 + 0.776274i \(0.282892\pi\)
\(564\) 0 0
\(565\) 2.25983i 0.0950718i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 30.8238i 1.29220i 0.763252 + 0.646101i \(0.223601\pi\)
−0.763252 + 0.646101i \(0.776399\pi\)
\(570\) 0 0
\(571\) −5.34693 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.0639i 1.58737i
\(576\) 0 0
\(577\) 16.3235 9.42437i 0.679556 0.392342i −0.120132 0.992758i \(-0.538332\pi\)
0.799688 + 0.600416i \(0.204998\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.382846 0.941248i −0.0158831 0.0390495i
\(582\) 0 0
\(583\) −6.91522 −0.286399
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.3955 + 21.4697i 0.511619 + 0.886150i 0.999909 + 0.0134687i \(0.00428734\pi\)
−0.488290 + 0.872681i \(0.662379\pi\)
\(588\) 0 0
\(589\) −3.80464 + 6.58982i −0.156767 + 0.271529i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.87451 3.24675i 0.0769770 0.133328i −0.824967 0.565180i \(-0.808807\pi\)
0.901944 + 0.431852i \(0.142140\pi\)
\(594\) 0 0
\(595\) −0.886331 + 1.13992i −0.0363360 + 0.0467323i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.0673i 1.31024i 0.755527 + 0.655118i \(0.227381\pi\)
−0.755527 + 0.655118i \(0.772619\pi\)
\(600\) 0 0
\(601\) 5.98069 3.45296i 0.243958 0.140849i −0.373037 0.927817i \(-0.621683\pi\)
0.616994 + 0.786968i \(0.288350\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.99824 + 8.65721i −0.203207 + 0.351966i
\(606\) 0 0
\(607\) −18.7892 + 10.8479i −0.762629 + 0.440304i −0.830239 0.557408i \(-0.811796\pi\)
0.0676102 + 0.997712i \(0.478463\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.9437 + 14.9786i 1.04957 + 0.605968i
\(612\) 0 0
\(613\) 8.96928 + 15.5352i 0.362266 + 0.627463i 0.988333 0.152306i \(-0.0486699\pi\)
−0.626068 + 0.779769i \(0.715337\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.9146 19.0033i −1.32509 0.765043i −0.340557 0.940224i \(-0.610616\pi\)
−0.984536 + 0.175181i \(0.943949\pi\)
\(618\) 0 0
\(619\) 37.5659 + 21.6887i 1.50990 + 0.871743i 0.999933 + 0.0115498i \(0.00367650\pi\)
0.509969 + 0.860193i \(0.329657\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.0646303 0.0831220i 0.00258936 0.00333021i
\(624\) 0 0
\(625\) −9.65906 16.7300i −0.386363 0.669200i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.17556 0.0867453
\(630\) 0 0
\(631\) 11.2735 0.448793 0.224396 0.974498i \(-0.427959\pi\)
0.224396 + 0.974498i \(0.427959\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.16189 5.47655i −0.125476 0.217330i
\(636\) 0 0
\(637\) 15.4602 + 15.8607i 0.612555 + 0.628425i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 25.7688 + 14.8776i 1.01781 + 0.587631i 0.913468 0.406911i \(-0.133394\pi\)
0.104339 + 0.994542i \(0.466727\pi\)
\(642\) 0 0
\(643\) 37.4271 + 21.6085i 1.47598 + 0.852158i 0.999633 0.0270991i \(-0.00862696\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.42940 16.3322i −0.370708 0.642085i 0.618967 0.785417i \(-0.287552\pi\)
−0.989675 + 0.143332i \(0.954218\pi\)
\(648\) 0 0
\(649\) 28.6661 + 16.5504i 1.12524 + 0.649660i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.41584 + 4.85889i −0.329337 + 0.190143i −0.655547 0.755155i \(-0.727562\pi\)
0.326210 + 0.945297i \(0.394228\pi\)
\(654\) 0 0
\(655\) 6.78397 11.7502i 0.265072 0.459118i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.5327 16.4734i 1.11148 0.641712i 0.172266 0.985050i \(-0.444891\pi\)
0.939212 + 0.343338i \(0.111558\pi\)
\(660\) 0 0
\(661\) 1.25812i 0.0489353i 0.999701 + 0.0244677i \(0.00778907\pi\)
−0.999701 + 0.0244677i \(0.992211\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.369920 2.67743i 0.0143449 0.103826i
\(666\) 0 0
\(667\) 23.6596 40.9797i 0.916104 1.58674i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.9955 + 50.2217i −1.11936 + 1.93879i
\(672\) 0 0
\(673\) −12.2655 21.2445i −0.472800 0.818914i 0.526715 0.850042i \(-0.323423\pi\)
−0.999515 + 0.0311279i \(0.990090\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.1233 0.888699 0.444350 0.895853i \(-0.353435\pi\)
0.444350 + 0.895853i \(0.353435\pi\)
\(678\) 0 0
\(679\) −16.8290 + 6.84506i −0.645836 + 0.262689i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.4945 + 7.21370i −0.478089 + 0.276025i −0.719620 0.694368i \(-0.755684\pi\)
0.241531 + 0.970393i \(0.422350\pi\)
\(684\) 0 0
\(685\) 0.245147i 0.00936659i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.20859 −0.160335
\(690\) 0 0
\(691\) 37.4114i 1.42320i −0.702586 0.711599i \(-0.747971\pi\)
0.702586 0.711599i \(-0.252029\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.2796i 0.427860i
\(696\) 0 0
\(697\) −6.16802 −0.233630
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.0429i 1.55017i −0.631859 0.775084i \(-0.717708\pi\)
0.631859 0.775084i \(-0.282292\pi\)
\(702\) 0 0
\(703\) −3.52672 + 2.03615i −0.133013 + 0.0767950i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.4959 + 18.6435i −0.545176 + 0.701160i
\(708\) 0 0
\(709\) 23.3246 0.875974 0.437987 0.898981i \(-0.355692\pi\)
0.437987 + 0.898981i \(0.355692\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.1712 + 33.2054i 0.717966 + 1.24355i
\(714\) 0 0
\(715\) −5.12928 + 8.88418i −0.191824 + 0.332249i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.7489 + 37.6701i −0.811096 + 1.40486i 0.101002 + 0.994886i \(0.467795\pi\)
−0.912098 + 0.409973i \(0.865538\pi\)
\(720\) 0 0
\(721\) 21.7354 8.84073i 0.809470 0.329246i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 26.4325i 0.981679i
\(726\) 0 0
\(727\) 11.3715 6.56536i 0.421747 0.243496i −0.274078 0.961708i \(-0.588373\pi\)
0.695824 + 0.718212i \(0.255039\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.36878 2.37079i 0.0506261 0.0876870i
\(732\) 0 0
\(733\) 34.7965 20.0898i 1.28524 0.742032i 0.307436 0.951569i \(-0.400529\pi\)
0.977801 + 0.209537i \(0.0671955\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.4762 + 31.4518i 2.00666 + 1.15854i
\(738\) 0 0
\(739\) 18.7073 + 32.4020i 0.688158 + 1.19193i 0.972433 + 0.233182i \(0.0749139\pi\)
−0.284275 + 0.958743i \(0.591753\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0501 17.3494i −1.10243 0.636488i −0.165572 0.986198i \(-0.552947\pi\)
−0.936858 + 0.349709i \(0.886280\pi\)
\(744\) 0 0
\(745\) 5.53597 + 3.19619i 0.202822 + 0.117099i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.37500 4.95679i −0.232938 0.181117i
\(750\) 0 0
\(751\) 14.5070 + 25.1268i 0.529367 + 0.916891i 0.999413 + 0.0342492i \(0.0109040\pi\)
−0.470046 + 0.882642i \(0.655763\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14.8423 −0.540168
\(756\) 0 0
\(757\) −8.62406 −0.313447 −0.156723 0.987643i \(-0.550093\pi\)
−0.156723 + 0.987643i \(0.550093\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.4107 + 19.7638i 0.413636 + 0.716439i 0.995284 0.0970019i \(-0.0309253\pi\)
−0.581648 + 0.813440i \(0.697592\pi\)
\(762\) 0 0
\(763\) −11.0663 27.2070i −0.400626 0.984961i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17.4462 + 10.0725i 0.629945 + 0.363699i
\(768\) 0 0
\(769\) −27.6397 15.9578i −0.996714 0.575453i −0.0894399 0.995992i \(-0.528508\pi\)
−0.907275 + 0.420539i \(0.861841\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.8503 30.9176i −0.642030 1.11203i −0.984979 0.172675i \(-0.944759\pi\)
0.342949 0.939354i \(-0.388574\pi\)
\(774\) 0 0
\(775\) −18.5486 10.7090i −0.666284 0.384679i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.99875 5.77278i 0.358242 0.206831i
\(780\) 0 0
\(781\) 27.5190 47.6643i 0.984708 1.70556i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.21492 3.58819i 0.221820 0.128068i
\(786\) 0 0
\(787\) 13.8834i 0.494888i 0.968902 + 0.247444i \(0.0795907\pi\)
−0.968902 + 0.247444i \(0.920409\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.56908 + 5.88522i 0.269125 + 0.209254i
\(792\) 0 0
\(793\) −17.6466 + 30.5649i −0.626651 + 1.08539i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.2145 + 24.6203i −0.503504 + 0.872094i 0.496488 + 0.868044i \(0.334623\pi\)
−0.999992 + 0.00405063i \(0.998711\pi\)
\(798\) 0 0
\(799\) 4.14300 + 7.17589i 0.146569 + 0.253865i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −70.0708 −2.47274
\(804\) 0 0
\(805\) −10.7518 8.35990i −0.378951 0.294648i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.1074 12.1864i 0.742096 0.428449i −0.0807348 0.996736i \(-0.525727\pi\)
0.822831 + 0.568286i \(0.192393\pi\)
\(810\) 0 0
\(811\) 35.2739i 1.23863i 0.785141 + 0.619317i \(0.212591\pi\)
−0.785141 + 0.619317i \(0.787409\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.0474 0.457030
\(816\) 0 0
\(817\) 5.12428i 0.179276i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.5144i 0.681056i −0.940234 0.340528i \(-0.889394\pi\)
0.940234 0.340528i \(-0.110606\pi\)
\(822\) 0 0
\(823\) −31.6570 −1.10349 −0.551747 0.834012i \(-0.686038\pi\)
−0.551747 + 0.834012i \(0.686038\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.4749i 0.851075i −0.904941 0.425537i \(-0.860085\pi\)
0.904941 0.425537i \(-0.139915\pi\)
\(828\) 0 0
\(829\) 0.846010 0.488444i 0.0293831 0.0169644i −0.485236 0.874383i \(-0.661266\pi\)
0.514620 + 0.857419i \(0.327933\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.50981 + 5.93736i 0.0523119 + 0.205717i
\(834\) 0 0
\(835\) −8.34819 −0.288901
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.6920 + 34.1075i 0.679843 + 1.17752i 0.975028 + 0.222083i \(0.0712856\pi\)
−0.295184 + 0.955440i \(0.595381\pi\)
\(840\) 0 0
\(841\) 1.92983 3.34257i 0.0665459 0.115261i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.931704 1.61376i 0.0320516 0.0555150i
\(846\) 0 0
\(847\) 15.9797 + 39.2869i 0.549067 + 1.34991i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 20.5199i 0.703415i
\(852\) 0 0
\(853\) 21.3507 12.3268i 0.731033 0.422062i −0.0877672 0.996141i \(-0.527973\pi\)
0.818800 + 0.574079i \(0.194640\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.4145 + 19.7705i −0.389911 + 0.675346i −0.992437 0.122753i \(-0.960828\pi\)
0.602526 + 0.798099i \(0.294161\pi\)
\(858\) 0 0
\(859\) 41.3224 23.8575i 1.40990 0.814007i 0.414523 0.910039i \(-0.363948\pi\)
0.995378 + 0.0960315i \(0.0306150\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −18.0645 10.4296i −0.614923 0.355026i 0.159967 0.987122i \(-0.448861\pi\)
−0.774890 + 0.632096i \(0.782195\pi\)
\(864\) 0 0
\(865\) 1.83607 + 3.18017i 0.0624283 + 0.108129i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 43.6601 + 25.2072i 1.48107 + 0.855094i
\(870\) 0 0
\(871\) 33.1541 + 19.1416i 1.12339 + 0.648587i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15.7080 + 2.17026i 0.531028 + 0.0733680i
\(876\) 0 0
\(877\) 11.7718 + 20.3894i 0.397506 + 0.688500i 0.993417 0.114550i \(-0.0365426\pi\)
−0.595912 + 0.803050i \(0.703209\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −52.5975 −1.77205 −0.886027 0.463633i \(-0.846546\pi\)
−0.886027 + 0.463633i \(0.846546\pi\)
\(882\) 0 0
\(883\) −33.6815 −1.13347 −0.566737 0.823899i \(-0.691794\pi\)
−0.566737 + 0.823899i \(0.691794\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.51139 13.0101i −0.252208 0.436837i 0.711926 0.702255i \(-0.247823\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(888\) 0 0
\(889\) −26.5776 3.67203i −0.891385 0.123156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.4321 7.75505i −0.449489 0.259513i
\(894\) 0 0
\(895\) 9.00059 + 5.19649i 0.300856 + 0.173700i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.3129 + 23.0587i 0.444011 + 0.769050i
\(900\) 0 0
\(901\) −1.00812 0.582038i −0.0335853 0.0193905i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.249884 0.144271i 0.00830643 0.00479572i
\(906\) 0 0
\(907\) 5.84747 10.1281i 0.194162 0.336299i −0.752463 0.658634i \(-0.771135\pi\)
0.946626 + 0.322335i \(0.104468\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.9026 8.02666i 0.460613 0.265935i −0.251689 0.967808i \(-0.580986\pi\)
0.712302 + 0.701873i \(0.247653\pi\)
\(912\) 0 0
\(913\) 1.99676i 0.0660831i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.6887 53.3230i −0.716225 1.76088i
\(918\) 0 0
\(919\) 9.26860 16.0537i 0.305743 0.529562i −0.671683 0.740838i \(-0.734428\pi\)
0.977426 + 0.211276i \(0.0677618\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.7480 29.0084i 0.551268 0.954824i
\(924\) 0 0
\(925\) −5.73122 9.92676i −0.188441 0.326390i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 53.6714 1.76090 0.880451 0.474138i \(-0.157240\pi\)
0.880451 + 0.474138i \(0.157240\pi\)
\(930\) 0 0
\(931\) −8.00440 8.21177i −0.262334 0.269130i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.45732 + 1.41873i −0.0803630 + 0.0463976i
\(936\) 0 0
\(937\) 16.7752i 0.548023i −0.961726 0.274012i \(-0.911649\pi\)
0.961726 0.274012i \(-0.0883506\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −37.0686 −1.20840 −0.604200 0.796833i \(-0.706507\pi\)
−0.604200 + 0.796833i \(0.706507\pi\)
\(942\) 0 0
\(943\) 58.1769i 1.89450i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.16082i 0.102713i 0.998680 + 0.0513565i \(0.0163545\pi\)
−0.998680 + 0.0513565i \(0.983646\pi\)
\(948\) 0 0
\(949\) −42.6450 −1.38431
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.9680i 1.26230i 0.775662 + 0.631149i \(0.217416\pi\)
−0.775662 + 0.631149i \(0.782584\pi\)
\(954\) 0 0
\(955\) 7.36550 4.25247i 0.238342 0.137607i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.821096 + 0.638431i 0.0265146 + 0.0206160i
\(960\) 0 0
\(961\) 9.42531 0.304042
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.57902 6.19905i −0.115213 0.199555i
\(966\) 0 0
\(967\) −7.29560 + 12.6363i −0.234611 + 0.406357i −0.959159 0.282866i \(-0.908715\pi\)
0.724549 + 0.689223i \(0.242048\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.3537 19.6652i 0.364358 0.631086i −0.624315 0.781172i \(-0.714622\pi\)
0.988673 + 0.150087i \(0.0479553\pi\)
\(972\) 0 0
\(973\) 37.7800 + 29.3752i 1.21117 + 0.941727i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.0411i 1.31302i −0.754317 0.656511i \(-0.772032\pi\)
0.754317 0.656511i \(-0.227968\pi\)
\(978\) 0 0
\(979\) 0.179185 0.103453i 0.00572678 0.00330636i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.4653 + 18.1263i −0.333790 + 0.578141i −0.983252 0.182253i \(-0.941661\pi\)
0.649462 + 0.760394i \(0.274994\pi\)
\(984\) 0 0
\(985\) 2.58243 1.49097i 0.0822832 0.0475062i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22.3614 + 12.9104i 0.711051 + 0.410525i
\(990\) 0 0
\(991\) 26.9709 + 46.7149i 0.856758 + 1.48395i 0.875004 + 0.484116i \(0.160859\pi\)
−0.0182456 + 0.999834i \(0.505808\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.91290 + 2.83647i 0.155749 + 0.0899220i
\(996\) 0 0
\(997\) 2.78561 + 1.60827i 0.0882211 + 0.0509345i 0.543462 0.839434i \(-0.317113\pi\)
−0.455240 + 0.890369i \(0.650447\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.1097.14 48
3.2 odd 2 504.2.bs.a.257.3 48
4.3 odd 2 3024.2.ca.e.2609.14 48
7.3 odd 6 1512.2.cx.a.17.14 48
9.2 odd 6 1512.2.cx.a.89.14 48
9.7 even 3 504.2.cx.a.425.11 yes 48
12.11 even 2 1008.2.ca.e.257.22 48
21.17 even 6 504.2.cx.a.185.11 yes 48
28.3 even 6 3024.2.df.e.17.14 48
36.7 odd 6 1008.2.df.e.929.14 48
36.11 even 6 3024.2.df.e.1601.14 48
63.38 even 6 inner 1512.2.bs.a.521.14 48
63.52 odd 6 504.2.bs.a.353.3 yes 48
84.59 odd 6 1008.2.df.e.689.14 48
252.115 even 6 1008.2.ca.e.353.22 48
252.227 odd 6 3024.2.ca.e.2033.14 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.3 48 3.2 odd 2
504.2.bs.a.353.3 yes 48 63.52 odd 6
504.2.cx.a.185.11 yes 48 21.17 even 6
504.2.cx.a.425.11 yes 48 9.7 even 3
1008.2.ca.e.257.22 48 12.11 even 2
1008.2.ca.e.353.22 48 252.115 even 6
1008.2.df.e.689.14 48 84.59 odd 6
1008.2.df.e.929.14 48 36.7 odd 6
1512.2.bs.a.521.14 48 63.38 even 6 inner
1512.2.bs.a.1097.14 48 1.1 even 1 trivial
1512.2.cx.a.17.14 48 7.3 odd 6
1512.2.cx.a.89.14 48 9.2 odd 6
3024.2.ca.e.2033.14 48 252.227 odd 6
3024.2.ca.e.2609.14 48 4.3 odd 2
3024.2.df.e.17.14 48 28.3 even 6
3024.2.df.e.1601.14 48 36.11 even 6