Properties

Label 1512.2.cx.a.89.14
Level $1512$
Weight $2$
Character 1512.89
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.14
Character \(\chi\) \(=\) 1512.89
Dual form 1512.2.cx.a.17.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.623597 q^{5} +(-0.996837 - 2.45078i) q^{7} +5.19907i q^{11} +(-2.74023 + 1.58207i) q^{13} +(-0.437594 - 0.757935i) q^{17} +(-1.41874 - 0.819107i) q^{19} +8.25480i q^{23} -4.61113 q^{25} +(-4.96435 - 2.86617i) q^{29} +(4.02256 + 2.32243i) q^{31} +(-0.621624 - 1.52830i) q^{35} +(1.24291 - 2.15278i) q^{37} +(3.52382 + 6.10344i) q^{41} +(-1.56398 + 2.70890i) q^{43} +(4.73384 + 8.19925i) q^{47} +(-5.01263 + 4.88605i) q^{49} +(1.15189 - 0.665044i) q^{53} +3.24212i q^{55} +(3.18334 - 5.51370i) q^{59} +(9.65975 - 5.57706i) q^{61} +(-1.70880 + 0.986576i) q^{65} +(-6.04951 + 10.4781i) q^{67} +10.5861i q^{71} +(-11.6719 + 6.73878i) q^{73} +(12.7418 - 5.18263i) q^{77} +(-4.84840 - 8.39767i) q^{79} +(0.192030 - 0.332606i) q^{83} +(-0.272882 - 0.472646i) q^{85} +(-0.0198983 + 0.0344648i) q^{89} +(6.60888 + 5.13864i) q^{91} +(-0.884719 - 0.510793i) q^{95} +(5.94681 + 3.43339i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.623597 0.278881 0.139440 0.990230i \(-0.455470\pi\)
0.139440 + 0.990230i \(0.455470\pi\)
\(6\) 0 0
\(7\) −0.996837 2.45078i −0.376769 0.926307i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.19907i 1.56758i 0.621026 + 0.783790i \(0.286716\pi\)
−0.621026 + 0.783790i \(0.713284\pi\)
\(12\) 0 0
\(13\) −2.74023 + 1.58207i −0.760004 + 0.438788i −0.829297 0.558808i \(-0.811259\pi\)
0.0692932 + 0.997596i \(0.477926\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.437594 0.757935i −0.106132 0.183826i 0.808068 0.589089i \(-0.200513\pi\)
−0.914200 + 0.405263i \(0.867180\pi\)
\(18\) 0 0
\(19\) −1.41874 0.819107i −0.325480 0.187916i 0.328352 0.944555i \(-0.393507\pi\)
−0.653833 + 0.756639i \(0.726840\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.25480i 1.72124i 0.509245 + 0.860622i \(0.329925\pi\)
−0.509245 + 0.860622i \(0.670075\pi\)
\(24\) 0 0
\(25\) −4.61113 −0.922225
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.96435 2.86617i −0.921856 0.532234i −0.0376295 0.999292i \(-0.511981\pi\)
−0.884227 + 0.467058i \(0.845314\pi\)
\(30\) 0 0
\(31\) 4.02256 + 2.32243i 0.722474 + 0.417120i 0.815662 0.578528i \(-0.196373\pi\)
−0.0931888 + 0.995648i \(0.529706\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.621624 1.52830i −0.105074 0.258329i
\(36\) 0 0
\(37\) 1.24291 2.15278i 0.204333 0.353916i −0.745587 0.666408i \(-0.767831\pi\)
0.949920 + 0.312493i \(0.101164\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.52382 + 6.10344i 0.550329 + 0.953198i 0.998251 + 0.0591249i \(0.0188310\pi\)
−0.447922 + 0.894073i \(0.647836\pi\)
\(42\) 0 0
\(43\) −1.56398 + 2.70890i −0.238505 + 0.413103i −0.960286 0.279019i \(-0.909991\pi\)
0.721780 + 0.692122i \(0.243324\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.73384 + 8.19925i 0.690502 + 1.19598i 0.971674 + 0.236327i \(0.0759435\pi\)
−0.281172 + 0.959657i \(0.590723\pi\)
\(48\) 0 0
\(49\) −5.01263 + 4.88605i −0.716090 + 0.698007i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.15189 0.665044i 0.158224 0.0913508i −0.418797 0.908080i \(-0.637548\pi\)
0.577021 + 0.816729i \(0.304215\pi\)
\(54\) 0 0
\(55\) 3.24212i 0.437168i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.18334 5.51370i 0.414435 0.717823i −0.580934 0.813951i \(-0.697313\pi\)
0.995369 + 0.0961281i \(0.0306459\pi\)
\(60\) 0 0
\(61\) 9.65975 5.57706i 1.23680 0.714069i 0.268365 0.963317i \(-0.413517\pi\)
0.968440 + 0.249248i \(0.0801835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.70880 + 0.986576i −0.211951 + 0.122370i
\(66\) 0 0
\(67\) −6.04951 + 10.4781i −0.739065 + 1.28010i 0.213851 + 0.976866i \(0.431399\pi\)
−0.952917 + 0.303232i \(0.901934\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.5861i 1.25634i 0.778076 + 0.628171i \(0.216196\pi\)
−0.778076 + 0.628171i \(0.783804\pi\)
\(72\) 0 0
\(73\) −11.6719 + 6.73878i −1.36609 + 0.788714i −0.990427 0.138041i \(-0.955920\pi\)
−0.375666 + 0.926755i \(0.622586\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.7418 5.18263i 1.45206 0.590615i
\(78\) 0 0
\(79\) −4.84840 8.39767i −0.545487 0.944811i −0.998576 0.0533461i \(-0.983011\pi\)
0.453089 0.891465i \(-0.350322\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.192030 0.332606i 0.0210781 0.0365083i −0.855294 0.518143i \(-0.826623\pi\)
0.876372 + 0.481635i \(0.159957\pi\)
\(84\) 0 0
\(85\) −0.272882 0.472646i −0.0295982 0.0512656i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.0198983 + 0.0344648i −0.00210921 + 0.00365326i −0.867078 0.498172i \(-0.834005\pi\)
0.864969 + 0.501826i \(0.167338\pi\)
\(90\) 0 0
\(91\) 6.60888 + 5.13864i 0.692799 + 0.538675i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.884719 0.510793i −0.0907702 0.0524062i
\(96\) 0 0
\(97\) 5.94681 + 3.43339i 0.603807 + 0.348608i 0.770538 0.637394i \(-0.219988\pi\)
−0.166731 + 0.986002i \(0.553321\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.92598 −0.888168 −0.444084 0.895985i \(-0.646471\pi\)
−0.444084 + 0.895985i \(0.646471\pi\)
\(102\) 0 0
\(103\) 8.86879i 0.873868i 0.899494 + 0.436934i \(0.143936\pi\)
−0.899494 + 0.436934i \(0.856064\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.64326 + 1.52609i 0.255534 + 0.147532i 0.622295 0.782782i \(-0.286200\pi\)
−0.366762 + 0.930315i \(0.619534\pi\)
\(108\) 0 0
\(109\) −5.55069 9.61408i −0.531660 0.920862i −0.999317 0.0369519i \(-0.988235\pi\)
0.467657 0.883910i \(-0.345098\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.13836 1.81193i 0.295232 0.170452i −0.345067 0.938578i \(-0.612144\pi\)
0.640299 + 0.768126i \(0.278810\pi\)
\(114\) 0 0
\(115\) 5.14766i 0.480022i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.42132 + 1.82798i −0.130292 + 0.167571i
\(120\) 0 0
\(121\) −16.0304 −1.45731
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.99347 −0.536072
\(126\) 0 0
\(127\) −10.1408 −0.899852 −0.449926 0.893066i \(-0.648550\pi\)
−0.449926 + 0.893066i \(0.648550\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −21.7576 −1.90097 −0.950484 0.310774i \(-0.899412\pi\)
−0.950484 + 0.310774i \(0.899412\pi\)
\(132\) 0 0
\(133\) −0.593203 + 4.29352i −0.0514372 + 0.372296i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.393118i 0.0335863i 0.999859 + 0.0167932i \(0.00534568\pi\)
−0.999859 + 0.0167932i \(0.994654\pi\)
\(138\) 0 0
\(139\) −15.6647 + 9.04400i −1.32866 + 0.767102i −0.985092 0.172026i \(-0.944969\pi\)
−0.343568 + 0.939128i \(0.611635\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.22532 14.2467i −0.687836 1.19137i
\(144\) 0 0
\(145\) −3.09575 1.78733i −0.257088 0.148430i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.2508i 0.839781i −0.907575 0.419891i \(-0.862068\pi\)
0.907575 0.419891i \(-0.137932\pi\)
\(150\) 0 0
\(151\) 23.8012 1.93691 0.968457 0.249181i \(-0.0801614\pi\)
0.968457 + 0.249181i \(0.0801614\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.50846 + 1.44826i 0.201484 + 0.116327i
\(156\) 0 0
\(157\) 9.96626 + 5.75402i 0.795394 + 0.459221i 0.841858 0.539699i \(-0.181462\pi\)
−0.0464641 + 0.998920i \(0.514795\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 20.2307 8.22868i 1.59440 0.648511i
\(162\) 0 0
\(163\) 10.4614 18.1197i 0.819399 1.41924i −0.0867261 0.996232i \(-0.527640\pi\)
0.906125 0.423009i \(-0.139026\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.69358 + 11.5936i 0.517965 + 0.897141i 0.999782 + 0.0208697i \(0.00664350\pi\)
−0.481817 + 0.876272i \(0.660023\pi\)
\(168\) 0 0
\(169\) −1.49408 + 2.58782i −0.114929 + 0.199063i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.94433 + 5.09972i 0.223853 + 0.387725i 0.955975 0.293449i \(-0.0948031\pi\)
−0.732122 + 0.681174i \(0.761470\pi\)
\(174\) 0 0
\(175\) 4.59654 + 11.3009i 0.347466 + 0.854264i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.4333 + 8.33310i −1.07880 + 0.622845i −0.930572 0.366109i \(-0.880690\pi\)
−0.148227 + 0.988953i \(0.547357\pi\)
\(180\) 0 0
\(181\) 0.462705i 0.0343926i −0.999852 0.0171963i \(-0.994526\pi\)
0.999852 0.0171963i \(-0.00547402\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.775075 1.34247i 0.0569846 0.0987003i
\(186\) 0 0
\(187\) 3.94056 2.27508i 0.288162 0.166371i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.8113 6.81927i 0.854637 0.493425i −0.00757544 0.999971i \(-0.502411\pi\)
0.862213 + 0.506546i \(0.169078\pi\)
\(192\) 0 0
\(193\) 5.73933 9.94080i 0.413126 0.715555i −0.582104 0.813114i \(-0.697770\pi\)
0.995230 + 0.0975597i \(0.0311037\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.78184i 0.340692i 0.985384 + 0.170346i \(0.0544885\pi\)
−0.985384 + 0.170346i \(0.945511\pi\)
\(198\) 0 0
\(199\) 7.87833 4.54856i 0.558480 0.322439i −0.194055 0.980991i \(-0.562164\pi\)
0.752535 + 0.658552i \(0.228831\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.07570 + 15.0236i −0.145685 + 1.05445i
\(204\) 0 0
\(205\) 2.19745 + 3.80609i 0.153476 + 0.265829i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.25860 7.37611i 0.294573 0.510216i
\(210\) 0 0
\(211\) 1.47477 + 2.55437i 0.101527 + 0.175850i 0.912314 0.409491i \(-0.134294\pi\)
−0.810787 + 0.585341i \(0.800960\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.975294 + 1.68926i −0.0665145 + 0.115207i
\(216\) 0 0
\(217\) 1.68192 12.1735i 0.114176 0.826391i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.39822 + 1.38461i 0.161322 + 0.0931391i
\(222\) 0 0
\(223\) 20.4564 + 11.8105i 1.36986 + 0.790891i 0.990910 0.134524i \(-0.0429506\pi\)
0.378954 + 0.925416i \(0.376284\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0507 1.19807 0.599033 0.800725i \(-0.295552\pi\)
0.599033 + 0.800725i \(0.295552\pi\)
\(228\) 0 0
\(229\) 12.1488i 0.802815i −0.915900 0.401407i \(-0.868521\pi\)
0.915900 0.401407i \(-0.131479\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.39111 1.95786i −0.222159 0.128264i 0.384791 0.923004i \(-0.374274\pi\)
−0.606950 + 0.794740i \(0.707607\pi\)
\(234\) 0 0
\(235\) 2.95201 + 5.11303i 0.192568 + 0.333537i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.3996 + 6.00423i −0.672696 + 0.388381i −0.797097 0.603851i \(-0.793632\pi\)
0.124401 + 0.992232i \(0.460299\pi\)
\(240\) 0 0
\(241\) 28.2853i 1.82202i −0.412385 0.911010i \(-0.635304\pi\)
0.412385 0.911010i \(-0.364696\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.12586 + 3.04693i −0.199704 + 0.194661i
\(246\) 0 0
\(247\) 5.18355 0.329822
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0425 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(252\) 0 0
\(253\) −42.9173 −2.69819
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.6504 −0.913868 −0.456934 0.889501i \(-0.651052\pi\)
−0.456934 + 0.889501i \(0.651052\pi\)
\(258\) 0 0
\(259\) −6.51498 0.900125i −0.404821 0.0559310i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.73134i 0.353410i −0.984264 0.176705i \(-0.943456\pi\)
0.984264 0.176705i \(-0.0565438\pi\)
\(264\) 0 0
\(265\) 0.718314 0.414719i 0.0441257 0.0254760i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.61724 2.80114i −0.0986047 0.170788i 0.812503 0.582957i \(-0.198105\pi\)
−0.911107 + 0.412169i \(0.864771\pi\)
\(270\) 0 0
\(271\) −20.6677 11.9325i −1.25548 0.724849i −0.283284 0.959036i \(-0.591424\pi\)
−0.972192 + 0.234187i \(0.924757\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.9736i 1.44566i
\(276\) 0 0
\(277\) −7.66845 −0.460753 −0.230376 0.973102i \(-0.573996\pi\)
−0.230376 + 0.973102i \(0.573996\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.78880 5.07422i −0.524296 0.302702i 0.214395 0.976747i \(-0.431222\pi\)
−0.738690 + 0.674045i \(0.764555\pi\)
\(282\) 0 0
\(283\) 11.8373 + 6.83427i 0.703654 + 0.406255i 0.808707 0.588212i \(-0.200168\pi\)
−0.105053 + 0.994467i \(0.533501\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.4455 14.7203i 0.675607 0.868909i
\(288\) 0 0
\(289\) 8.11702 14.0591i 0.477472 0.827006i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.70903 + 4.69218i 0.158263 + 0.274120i 0.934242 0.356639i \(-0.116077\pi\)
−0.775979 + 0.630758i \(0.782744\pi\)
\(294\) 0 0
\(295\) 1.98512 3.43833i 0.115578 0.200187i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.0597 22.6201i −0.755262 1.30815i
\(300\) 0 0
\(301\) 8.19794 + 1.13265i 0.472522 + 0.0652847i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.02379 3.47784i 0.344921 0.199140i
\(306\) 0 0
\(307\) 3.56336i 0.203372i −0.994817 0.101686i \(-0.967576\pi\)
0.994817 0.101686i \(-0.0324236\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.63234 + 9.75550i −0.319381 + 0.553184i −0.980359 0.197221i \(-0.936808\pi\)
0.660978 + 0.750405i \(0.270142\pi\)
\(312\) 0 0
\(313\) 9.89696 5.71401i 0.559409 0.322975i −0.193499 0.981100i \(-0.561984\pi\)
0.752908 + 0.658125i \(0.228650\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.8604 + 9.73436i −0.946975 + 0.546736i −0.892140 0.451759i \(-0.850797\pi\)
−0.0548352 + 0.998495i \(0.517463\pi\)
\(318\) 0 0
\(319\) 14.9014 25.8100i 0.834319 1.44508i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.43375i 0.0797758i
\(324\) 0 0
\(325\) 12.6356 7.29515i 0.700895 0.404662i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 15.3757 19.7749i 0.847689 1.09023i
\(330\) 0 0
\(331\) −13.4838 23.3546i −0.741135 1.28368i −0.951979 0.306164i \(-0.900955\pi\)
0.210844 0.977520i \(-0.432379\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.77245 + 6.53408i −0.206111 + 0.356995i
\(336\) 0 0
\(337\) 0.993296 + 1.72044i 0.0541083 + 0.0937183i 0.891811 0.452408i \(-0.149435\pi\)
−0.837703 + 0.546127i \(0.816102\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0745 + 20.9136i −0.653869 + 1.13254i
\(342\) 0 0
\(343\) 16.9714 + 7.41426i 0.916370 + 0.400332i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −29.7673 17.1862i −1.59799 0.922603i −0.991873 0.127231i \(-0.959391\pi\)
−0.606122 0.795372i \(-0.707276\pi\)
\(348\) 0 0
\(349\) 25.3935 + 14.6609i 1.35928 + 0.784781i 0.989527 0.144348i \(-0.0461085\pi\)
0.369754 + 0.929130i \(0.379442\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.17305 −0.0624353 −0.0312177 0.999513i \(-0.509939\pi\)
−0.0312177 + 0.999513i \(0.509939\pi\)
\(354\) 0 0
\(355\) 6.60147i 0.350370i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.69591 3.28854i −0.300619 0.173562i 0.342102 0.939663i \(-0.388861\pi\)
−0.642721 + 0.766101i \(0.722194\pi\)
\(360\) 0 0
\(361\) −8.15813 14.1303i −0.429375 0.743699i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.27856 + 4.20228i −0.380977 + 0.219957i
\(366\) 0 0
\(367\) 9.51617i 0.496740i 0.968665 + 0.248370i \(0.0798948\pi\)
−0.968665 + 0.248370i \(0.920105\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.77812 2.16009i −0.144233 0.112146i
\(372\) 0 0
\(373\) 20.6303 1.06820 0.534098 0.845422i \(-0.320651\pi\)
0.534098 + 0.845422i \(0.320651\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.1380 0.934153
\(378\) 0 0
\(379\) −7.98265 −0.410041 −0.205020 0.978758i \(-0.565726\pi\)
−0.205020 + 0.978758i \(0.565726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 28.0968 1.43568 0.717840 0.696208i \(-0.245131\pi\)
0.717840 + 0.696208i \(0.245131\pi\)
\(384\) 0 0
\(385\) 7.94573 3.23187i 0.404952 0.164711i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 32.8397i 1.66504i −0.553997 0.832519i \(-0.686898\pi\)
0.553997 0.832519i \(-0.313102\pi\)
\(390\) 0 0
\(391\) 6.25660 3.61225i 0.316410 0.182679i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.02344 5.23676i −0.152126 0.263490i
\(396\) 0 0
\(397\) 9.24672 + 5.33859i 0.464079 + 0.267936i 0.713758 0.700392i \(-0.246992\pi\)
−0.249679 + 0.968329i \(0.580325\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.2789i 0.713052i −0.934285 0.356526i \(-0.883961\pi\)
0.934285 0.356526i \(-0.116039\pi\)
\(402\) 0 0
\(403\) −14.6970 −0.732111
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.1925 + 6.46198i 0.554791 + 0.320309i
\(408\) 0 0
\(409\) 7.04206 + 4.06574i 0.348208 + 0.201038i 0.663896 0.747825i \(-0.268902\pi\)
−0.315688 + 0.948863i \(0.602235\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.6861 2.30539i −0.821071 0.113441i
\(414\) 0 0
\(415\) 0.119750 0.207412i 0.00587827 0.0101815i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.53415 2.65723i −0.0749481 0.129814i 0.826116 0.563501i \(-0.190546\pi\)
−0.901064 + 0.433687i \(0.857212\pi\)
\(420\) 0 0
\(421\) 4.25752 7.37424i 0.207499 0.359398i −0.743427 0.668817i \(-0.766801\pi\)
0.950926 + 0.309418i \(0.100134\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.01780 + 3.49494i 0.0978778 + 0.169529i
\(426\) 0 0
\(427\) −23.2973 18.1145i −1.12744 0.876622i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.8414 + 11.4554i −0.955727 + 0.551789i −0.894855 0.446356i \(-0.852721\pi\)
−0.0608716 + 0.998146i \(0.519388\pi\)
\(432\) 0 0
\(433\) 32.7273i 1.57278i 0.617733 + 0.786388i \(0.288051\pi\)
−0.617733 + 0.786388i \(0.711949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.76156 11.7114i 0.323449 0.560231i
\(438\) 0 0
\(439\) 5.57285 3.21749i 0.265978 0.153562i −0.361081 0.932535i \(-0.617592\pi\)
0.627058 + 0.778972i \(0.284259\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 22.1159 12.7686i 1.05076 0.606656i 0.127898 0.991787i \(-0.459177\pi\)
0.922862 + 0.385131i \(0.125844\pi\)
\(444\) 0 0
\(445\) −0.0124085 + 0.0214921i −0.000588219 + 0.00101882i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.1008i 1.89247i 0.323474 + 0.946237i \(0.395149\pi\)
−0.323474 + 0.946237i \(0.604851\pi\)
\(450\) 0 0
\(451\) −31.7322 + 18.3206i −1.49421 + 0.862684i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.12128 + 3.20444i 0.193208 + 0.150226i
\(456\) 0 0
\(457\) 19.2357 + 33.3173i 0.899810 + 1.55852i 0.827737 + 0.561116i \(0.189628\pi\)
0.0720726 + 0.997399i \(0.477039\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0830 20.9283i 0.562759 0.974728i −0.434495 0.900674i \(-0.643073\pi\)
0.997254 0.0740533i \(-0.0235935\pi\)
\(462\) 0 0
\(463\) −8.65455 14.9901i −0.402211 0.696650i 0.591781 0.806098i \(-0.298425\pi\)
−0.993992 + 0.109449i \(0.965091\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.46858 9.47185i 0.253056 0.438305i −0.711310 0.702878i \(-0.751898\pi\)
0.964366 + 0.264573i \(0.0852311\pi\)
\(468\) 0 0
\(469\) 31.7098 + 4.38110i 1.46422 + 0.202300i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.0838 8.13126i −0.647572 0.373876i
\(474\) 0 0
\(475\) 6.54197 + 3.77701i 0.300166 + 0.173301i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.51349 −0.0691531 −0.0345765 0.999402i \(-0.511008\pi\)
−0.0345765 + 0.999402i \(0.511008\pi\)
\(480\) 0 0
\(481\) 7.86551i 0.358636i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.70841 + 2.14105i 0.168390 + 0.0972201i
\(486\) 0 0
\(487\) −0.0853077 0.147757i −0.00386566 0.00669552i 0.864086 0.503344i \(-0.167897\pi\)
−0.867952 + 0.496649i \(0.834564\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.5139 + 13.5757i −1.06117 + 0.612665i −0.925755 0.378125i \(-0.876569\pi\)
−0.135412 + 0.990789i \(0.543236\pi\)
\(492\) 0 0
\(493\) 5.01687i 0.225949i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.9442 10.5526i 1.16376 0.473350i
\(498\) 0 0
\(499\) 22.2654 0.996738 0.498369 0.866965i \(-0.333933\pi\)
0.498369 + 0.866965i \(0.333933\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.2005 1.43575 0.717876 0.696171i \(-0.245115\pi\)
0.717876 + 0.696171i \(0.245115\pi\)
\(504\) 0 0
\(505\) −5.56621 −0.247693
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.21817 0.408588 0.204294 0.978910i \(-0.434510\pi\)
0.204294 + 0.978910i \(0.434510\pi\)
\(510\) 0 0
\(511\) 28.1502 + 21.8878i 1.24529 + 0.968259i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.53055i 0.243705i
\(516\) 0 0
\(517\) −42.6285 + 24.6116i −1.87480 + 1.08242i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.44581 + 12.8965i 0.326207 + 0.565007i 0.981756 0.190146i \(-0.0608961\pi\)
−0.655549 + 0.755153i \(0.727563\pi\)
\(522\) 0 0
\(523\) −29.3725 16.9582i −1.28437 0.741532i −0.306727 0.951798i \(-0.599234\pi\)
−0.977644 + 0.210266i \(0.932567\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.06512i 0.177080i
\(528\) 0 0
\(529\) −45.1416 −1.96268
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.3122 11.1499i −0.836504 0.482956i
\(534\) 0 0
\(535\) 1.64833 + 0.951663i 0.0712635 + 0.0411440i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −25.4029 26.0610i −1.09418 1.12253i
\(540\) 0 0
\(541\) −2.65164 + 4.59278i −0.114003 + 0.197459i −0.917381 0.398011i \(-0.869701\pi\)
0.803378 + 0.595470i \(0.203034\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.46139 5.99531i −0.148270 0.256811i
\(546\) 0 0
\(547\) −4.13892 + 7.16882i −0.176967 + 0.306517i −0.940840 0.338850i \(-0.889962\pi\)
0.763873 + 0.645367i \(0.223295\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.69540 + 8.13267i 0.200031 + 0.346463i
\(552\) 0 0
\(553\) −15.7478 + 20.2534i −0.669663 + 0.861264i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.96801 4.02299i 0.295244 0.170459i −0.345060 0.938581i \(-0.612142\pi\)
0.640304 + 0.768121i \(0.278808\pi\)
\(558\) 0 0
\(559\) 9.89735i 0.418613i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.9578 25.9077i 0.630396 1.09188i −0.357074 0.934076i \(-0.616226\pi\)
0.987471 0.157802i \(-0.0504409\pi\)
\(564\) 0 0
\(565\) 1.95707 1.12992i 0.0823346 0.0475359i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.6942 + 15.4119i −1.11908 + 0.646101i −0.941166 0.337946i \(-0.890268\pi\)
−0.177913 + 0.984046i \(0.556935\pi\)
\(570\) 0 0
\(571\) 2.67347 4.63058i 0.111881 0.193784i −0.804648 0.593753i \(-0.797646\pi\)
0.916529 + 0.399969i \(0.130979\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.0639i 1.58737i
\(576\) 0 0
\(577\) 16.3235 9.42437i 0.679556 0.392342i −0.120132 0.992758i \(-0.538332\pi\)
0.799688 + 0.600416i \(0.204998\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.00657 0.139070i −0.0417595 0.00576959i
\(582\) 0 0
\(583\) 3.45761 + 5.98876i 0.143200 + 0.248029i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.3955 + 21.4697i −0.511619 + 0.886150i 0.488290 + 0.872681i \(0.337621\pi\)
−0.999909 + 0.0134687i \(0.995713\pi\)
\(588\) 0 0
\(589\) −3.80464 6.58982i −0.156767 0.271529i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.87451 + 3.24675i −0.0769770 + 0.133328i −0.901944 0.431852i \(-0.857860\pi\)
0.824967 + 0.565180i \(0.191193\pi\)
\(594\) 0 0
\(595\) −0.886331 + 1.13992i −0.0363360 + 0.0467323i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.7711 + 16.0337i 1.13470 + 0.655118i 0.945112 0.326746i \(-0.105952\pi\)
0.189586 + 0.981864i \(0.439286\pi\)
\(600\) 0 0
\(601\) −5.98069 3.45296i −0.243958 0.140849i 0.373037 0.927817i \(-0.378317\pi\)
−0.616994 + 0.786968i \(0.711650\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.99648 −0.406415
\(606\) 0 0
\(607\) 21.6959i 0.880608i −0.897849 0.440304i \(-0.854871\pi\)
0.897849 0.440304i \(-0.145129\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −25.9437 14.9786i −1.04957 0.605968i
\(612\) 0 0
\(613\) 8.96928 + 15.5352i 0.362266 + 0.627463i 0.988333 0.152306i \(-0.0486699\pi\)
−0.626068 + 0.779769i \(0.715337\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.9146 + 19.0033i −1.32509 + 0.765043i −0.984536 0.175181i \(-0.943949\pi\)
−0.340557 + 0.940224i \(0.610616\pi\)
\(618\) 0 0
\(619\) 43.3774i 1.74349i −0.489964 0.871743i \(-0.662990\pi\)
0.489964 0.871743i \(-0.337010\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.104301 + 0.0144105i 0.00417873 + 0.000577343i
\(624\) 0 0
\(625\) 19.3181 0.772725
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.17556 −0.0867453
\(630\) 0 0
\(631\) 11.2735 0.448793 0.224396 0.974498i \(-0.427959\pi\)
0.224396 + 0.974498i \(0.427959\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.32378 −0.250952
\(636\) 0 0
\(637\) 6.00569 21.3193i 0.237954 0.844701i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 29.7553i 1.17526i 0.809129 + 0.587631i \(0.199939\pi\)
−0.809129 + 0.587631i \(0.800061\pi\)
\(642\) 0 0
\(643\) −37.4271 + 21.6085i −1.47598 + 0.852158i −0.999633 0.0270991i \(-0.991373\pi\)
−0.476348 + 0.879257i \(0.658040\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.42940 + 16.3322i 0.370708 + 0.642085i 0.989675 0.143332i \(-0.0457817\pi\)
−0.618967 + 0.785417i \(0.712448\pi\)
\(648\) 0 0
\(649\) 28.6661 + 16.5504i 1.12524 + 0.649660i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.71777i 0.380286i 0.981756 + 0.190143i \(0.0608951\pi\)
−0.981756 + 0.190143i \(0.939105\pi\)
\(654\) 0 0
\(655\) −13.5679 −0.530144
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.5327 + 16.4734i 1.11148 + 0.641712i 0.939212 0.343338i \(-0.111558\pi\)
0.172266 + 0.985050i \(0.444891\pi\)
\(660\) 0 0
\(661\) −1.08957 0.629061i −0.0423792 0.0244677i 0.478661 0.878000i \(-0.341122\pi\)
−0.521040 + 0.853532i \(0.674456\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.369920 + 2.67743i −0.0143449 + 0.103826i
\(666\) 0 0
\(667\) 23.6596 40.9797i 0.916104 1.58674i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 28.9955 + 50.2217i 1.11936 + 1.93879i
\(672\) 0 0
\(673\) −12.2655 + 21.2445i −0.472800 + 0.818914i −0.999515 0.0311279i \(-0.990090\pi\)
0.526715 + 0.850042i \(0.323423\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.5616 + 20.0253i 0.444350 + 0.769636i 0.998007 0.0631088i \(-0.0201015\pi\)
−0.553657 + 0.832745i \(0.686768\pi\)
\(678\) 0 0
\(679\) 2.48649 17.9968i 0.0954226 0.690655i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.4945 7.21370i 0.478089 0.276025i −0.241531 0.970393i \(-0.577650\pi\)
0.719620 + 0.694368i \(0.244316\pi\)
\(684\) 0 0
\(685\) 0.245147i 0.00936659i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.10430 + 3.64475i −0.0801673 + 0.138854i
\(690\) 0 0
\(691\) −32.3993 + 18.7057i −1.23253 + 0.711599i −0.967556 0.252657i \(-0.918695\pi\)
−0.264970 + 0.964257i \(0.585362\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.76844 + 5.63981i −0.370538 + 0.213930i
\(696\) 0 0
\(697\) 3.08401 5.34166i 0.116815 0.202330i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.0429i 1.55017i 0.631859 + 0.775084i \(0.282292\pi\)
−0.631859 + 0.775084i \(0.717708\pi\)
\(702\) 0 0
\(703\) −3.52672 + 2.03615i −0.133013 + 0.0767950i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.89774 + 21.8756i 0.334634 + 0.822716i
\(708\) 0 0
\(709\) −11.6623 20.1997i −0.437987 0.758616i 0.559547 0.828798i \(-0.310975\pi\)
−0.997534 + 0.0701829i \(0.977642\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −19.1712 + 33.2054i −0.717966 + 1.24355i
\(714\) 0 0
\(715\) −5.12928 8.88418i −0.191824 0.332249i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.7489 37.6701i 0.811096 1.40486i −0.101002 0.994886i \(-0.532205\pi\)
0.912098 0.409973i \(-0.134462\pi\)
\(720\) 0 0
\(721\) 21.7354 8.84073i 0.809470 0.329246i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22.8912 + 13.2163i 0.850159 + 0.490840i
\(726\) 0 0
\(727\) −11.3715 6.56536i −0.421747 0.243496i 0.274078 0.961708i \(-0.411627\pi\)
−0.695824 + 0.718212i \(0.744961\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.73756 0.101252
\(732\) 0 0
\(733\) 40.1795i 1.48406i 0.670364 + 0.742032i \(0.266138\pi\)
−0.670364 + 0.742032i \(0.733862\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −54.4762 31.4518i −2.00666 1.15854i
\(738\) 0 0
\(739\) 18.7073 + 32.4020i 0.688158 + 1.19193i 0.972433 + 0.233182i \(0.0749139\pi\)
−0.284275 + 0.958743i \(0.591753\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0501 + 17.3494i −1.10243 + 0.636488i −0.936858 0.349709i \(-0.886280\pi\)
−0.165572 + 0.986198i \(0.552947\pi\)
\(744\) 0 0
\(745\) 6.39239i 0.234199i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.10520 7.99931i 0.0403833 0.292288i
\(750\) 0 0
\(751\) −29.0140 −1.05873 −0.529367 0.848393i \(-0.677571\pi\)
−0.529367 + 0.848393i \(0.677571\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.8423 0.540168
\(756\) 0 0
\(757\) −8.62406 −0.313447 −0.156723 0.987643i \(-0.550093\pi\)
−0.156723 + 0.987643i \(0.550093\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.8213 0.827272 0.413636 0.910442i \(-0.364259\pi\)
0.413636 + 0.910442i \(0.364259\pi\)
\(762\) 0 0
\(763\) −18.0288 + 23.1872i −0.652688 + 0.839432i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.1451i 0.727397i
\(768\) 0 0
\(769\) 27.6397 15.9578i 0.996714 0.575453i 0.0894399 0.995992i \(-0.471492\pi\)
0.907275 + 0.420539i \(0.138159\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.8503 + 30.9176i 0.642030 + 1.11203i 0.984979 + 0.172675i \(0.0552410\pi\)
−0.342949 + 0.939354i \(0.611426\pi\)
\(774\) 0 0
\(775\) −18.5486 10.7090i −0.666284 0.384679i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.5456i 0.413663i
\(780\) 0 0
\(781\) −55.0380 −1.96942
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.21492 + 3.58819i 0.221820 + 0.128068i
\(786\) 0 0
\(787\) −12.0233 6.94168i −0.428586 0.247444i 0.270158 0.962816i \(-0.412924\pi\)
−0.698744 + 0.715372i \(0.746257\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.56908 5.88522i −0.269125 0.209254i
\(792\) 0 0
\(793\) −17.6466 + 30.5649i −0.626651 + 1.08539i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.2145 + 24.6203i 0.503504 + 0.872094i 0.999992 + 0.00405063i \(0.00128936\pi\)
−0.496488 + 0.868044i \(0.665377\pi\)
\(798\) 0 0
\(799\) 4.14300 7.17589i 0.146569 0.253865i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −35.0354 60.6831i −1.23637 2.14146i
\(804\) 0 0
\(805\) 12.6158 5.13138i 0.444648 0.180857i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.1074 + 12.1864i −0.742096 + 0.428449i −0.822831 0.568286i \(-0.807607\pi\)
0.0807348 + 0.996736i \(0.474273\pi\)
\(810\) 0 0
\(811\) 35.2739i 1.23863i 0.785141 + 0.619317i \(0.212591\pi\)
−0.785141 + 0.619317i \(0.787409\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.52369 11.2994i 0.228515 0.395799i
\(816\) 0 0
\(817\) 4.43776 2.56214i 0.155257 0.0896379i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.8999 9.75719i 0.589812 0.340528i −0.175211 0.984531i \(-0.556061\pi\)
0.765023 + 0.644003i \(0.222727\pi\)
\(822\) 0 0
\(823\) 15.8285 27.4158i 0.551747 0.955653i −0.446402 0.894833i \(-0.647295\pi\)
0.998149 0.0608208i \(-0.0193718\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.4749i 0.851075i 0.904941 + 0.425537i \(0.139915\pi\)
−0.904941 + 0.425537i \(0.860085\pi\)
\(828\) 0 0
\(829\) 0.846010 0.488444i 0.0293831 0.0169644i −0.485236 0.874383i \(-0.661266\pi\)
0.514620 + 0.857419i \(0.327933\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.89681 + 1.66114i 0.204312 + 0.0575552i
\(834\) 0 0
\(835\) 4.17409 + 7.22974i 0.144450 + 0.250196i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.6920 + 34.1075i −0.679843 + 1.17752i 0.295184 + 0.955440i \(0.404619\pi\)
−0.975028 + 0.222083i \(0.928714\pi\)
\(840\) 0 0
\(841\) 1.92983 + 3.34257i 0.0665459 + 0.115261i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.931704 + 1.61376i −0.0320516 + 0.0555150i
\(846\) 0 0
\(847\) 15.9797 + 39.2869i 0.549067 + 1.34991i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17.7708 + 10.2600i 0.609175 + 0.351707i
\(852\) 0 0
\(853\) −21.3507 12.3268i −0.731033 0.422062i 0.0877672 0.996141i \(-0.472027\pi\)
−0.818800 + 0.574079i \(0.805360\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.8290 −0.779823 −0.389911 0.920852i \(-0.627494\pi\)
−0.389911 + 0.920852i \(0.627494\pi\)
\(858\) 0 0
\(859\) 47.7150i 1.62801i 0.580855 + 0.814007i \(0.302718\pi\)
−0.580855 + 0.814007i \(0.697282\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.0645 + 10.4296i 0.614923 + 0.355026i 0.774890 0.632096i \(-0.217805\pi\)
−0.159967 + 0.987122i \(0.551139\pi\)
\(864\) 0 0
\(865\) 1.83607 + 3.18017i 0.0624283 + 0.108129i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 43.6601 25.2072i 1.48107 0.855094i
\(870\) 0 0
\(871\) 38.2831i 1.29717i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.97451 + 14.6887i 0.201975 + 0.496567i
\(876\) 0 0
\(877\) −23.5436 −0.795011 −0.397506 0.917600i \(-0.630124\pi\)
−0.397506 + 0.917600i \(0.630124\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 52.5975 1.77205 0.886027 0.463633i \(-0.153454\pi\)
0.886027 + 0.463633i \(0.153454\pi\)
\(882\) 0 0
\(883\) −33.6815 −1.13347 −0.566737 0.823899i \(-0.691794\pi\)
−0.566737 + 0.823899i \(0.691794\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.0228 −0.504415 −0.252208 0.967673i \(-0.581157\pi\)
−0.252208 + 0.967673i \(0.581157\pi\)
\(888\) 0 0
\(889\) 10.1087 + 24.8529i 0.339036 + 0.833540i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.5101i 0.519026i
\(894\) 0 0
\(895\) −9.00059 + 5.19649i −0.300856 + 0.173700i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.3129 23.0587i −0.444011 0.769050i
\(900\) 0 0
\(901\) −1.00812 0.582038i −0.0335853 0.0193905i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.288542i 0.00959144i
\(906\) 0 0
\(907\) −11.6949 −0.388324 −0.194162 0.980969i \(-0.562199\pi\)
−0.194162 + 0.980969i \(0.562199\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.9026 + 8.02666i 0.460613 + 0.265935i 0.712302 0.701873i \(-0.247653\pi\)
−0.251689 + 0.967808i \(0.580986\pi\)
\(912\) 0 0
\(913\) 1.72925 + 0.998380i 0.0572297 + 0.0330416i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.6887 + 53.3230i 0.716225 + 1.76088i
\(918\) 0 0
\(919\) 9.26860 16.0537i 0.305743 0.529562i −0.671683 0.740838i \(-0.734428\pi\)
0.977426 + 0.211276i \(0.0677618\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.7480 29.0084i −0.551268 0.954824i
\(924\) 0 0
\(925\) −5.73122 + 9.92676i −0.188441 + 0.326390i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26.8357 + 46.4808i 0.880451 + 1.52499i 0.850841 + 0.525424i \(0.176093\pi\)
0.0296102 + 0.999562i \(0.490573\pi\)
\(930\) 0 0
\(931\) 11.1138 2.82613i 0.364240 0.0926227i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.45732 1.41873i 0.0803630 0.0463976i
\(936\) 0 0
\(937\) 16.7752i 0.548023i −0.961726 0.274012i \(-0.911649\pi\)
0.961726 0.274012i \(-0.0883506\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −18.5343 + 32.1023i −0.604200 + 1.04651i 0.387977 + 0.921669i \(0.373174\pi\)
−0.992177 + 0.124837i \(0.960159\pi\)
\(942\) 0 0
\(943\) −50.3827 + 29.0885i −1.64069 + 0.947250i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.73735 + 1.58041i −0.0889520 + 0.0513565i −0.543816 0.839204i \(-0.683021\pi\)
0.454864 + 0.890561i \(0.349688\pi\)
\(948\) 0 0
\(949\) 21.3225 36.9316i 0.692157 1.19885i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.9680i 1.26230i −0.775662 0.631149i \(-0.782584\pi\)
0.775662 0.631149i \(-0.217416\pi\)
\(954\) 0 0
\(955\) 7.36550 4.25247i 0.238342 0.137607i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.963445 0.391874i 0.0311113 0.0126543i
\(960\) 0 0
\(961\) −4.71266 8.16256i −0.152021 0.263308i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.57902 6.19905i 0.115213 0.199555i
\(966\) 0 0
\(967\) −7.29560 12.6363i −0.234611 0.406357i 0.724549 0.689223i \(-0.242048\pi\)
−0.959159 + 0.282866i \(0.908715\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.3537 + 19.6652i −0.364358 + 0.631086i −0.988673 0.150087i \(-0.952045\pi\)
0.624315 + 0.781172i \(0.285378\pi\)
\(972\) 0 0
\(973\) 37.7800 + 29.3752i 1.21117 + 0.941727i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −35.5426 20.5206i −1.13711 0.656511i −0.191397 0.981513i \(-0.561302\pi\)
−0.945713 + 0.325002i \(0.894635\pi\)
\(978\) 0 0
\(979\) −0.179185 0.103453i −0.00572678 0.00330636i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.9305 −0.667579 −0.333790 0.942648i \(-0.608328\pi\)
−0.333790 + 0.942648i \(0.608328\pi\)
\(984\) 0 0
\(985\) 2.98194i 0.0950125i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −22.3614 12.9104i −0.711051 0.410525i
\(990\) 0 0
\(991\) 26.9709 + 46.7149i 0.856758 + 1.48395i 0.875004 + 0.484116i \(0.160859\pi\)
−0.0182456 + 0.999834i \(0.505808\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.91290 2.83647i 0.155749 0.0899220i
\(996\) 0 0
\(997\) 3.21654i 0.101869i −0.998702 0.0509345i \(-0.983780\pi\)
0.998702 0.0509345i \(-0.0162200\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.89.14 48
3.2 odd 2 504.2.cx.a.425.11 yes 48
4.3 odd 2 3024.2.df.e.1601.14 48
7.3 odd 6 1512.2.bs.a.521.14 48
9.4 even 3 504.2.bs.a.257.3 48
9.5 odd 6 1512.2.bs.a.1097.14 48
12.11 even 2 1008.2.df.e.929.14 48
21.17 even 6 504.2.bs.a.353.3 yes 48
28.3 even 6 3024.2.ca.e.2033.14 48
36.23 even 6 3024.2.ca.e.2609.14 48
36.31 odd 6 1008.2.ca.e.257.22 48
63.31 odd 6 504.2.cx.a.185.11 yes 48
63.59 even 6 inner 1512.2.cx.a.17.14 48
84.59 odd 6 1008.2.ca.e.353.22 48
252.31 even 6 1008.2.df.e.689.14 48
252.59 odd 6 3024.2.df.e.17.14 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.3 48 9.4 even 3
504.2.bs.a.353.3 yes 48 21.17 even 6
504.2.cx.a.185.11 yes 48 63.31 odd 6
504.2.cx.a.425.11 yes 48 3.2 odd 2
1008.2.ca.e.257.22 48 36.31 odd 6
1008.2.ca.e.353.22 48 84.59 odd 6
1008.2.df.e.689.14 48 252.31 even 6
1008.2.df.e.929.14 48 12.11 even 2
1512.2.bs.a.521.14 48 7.3 odd 6
1512.2.bs.a.1097.14 48 9.5 odd 6
1512.2.cx.a.17.14 48 63.59 even 6 inner
1512.2.cx.a.89.14 48 1.1 even 1 trivial
3024.2.ca.e.2033.14 48 28.3 even 6
3024.2.ca.e.2609.14 48 36.23 even 6
3024.2.df.e.17.14 48 252.59 odd 6
3024.2.df.e.1601.14 48 4.3 odd 2