Properties

Label 1008.2.df.e.689.12
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.12
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.e.929.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.149059 + 1.72562i) q^{3} -2.22094 q^{5} +(2.45091 + 0.996507i) q^{7} +(-2.95556 - 0.514438i) q^{9} -1.17296i q^{11} +(3.12404 + 1.80366i) q^{13} +(0.331050 - 3.83251i) q^{15} +(-3.71178 + 6.42899i) q^{17} +(3.05231 - 1.76225i) q^{19} +(-2.08493 + 4.08082i) q^{21} +5.81246i q^{23} -0.0674336 q^{25} +(1.32828 - 5.02351i) q^{27} +(-6.04430 + 3.48968i) q^{29} +(-6.88517 + 3.97516i) q^{31} +(2.02410 + 0.174840i) q^{33} +(-5.44333 - 2.21318i) q^{35} +(-5.54350 - 9.60163i) q^{37} +(-3.57811 + 5.12207i) q^{39} +(-0.809022 + 1.40127i) q^{41} +(-0.904302 - 1.56630i) q^{43} +(6.56412 + 1.14254i) q^{45} +(4.26476 - 7.38679i) q^{47} +(5.01395 + 4.88471i) q^{49} +(-10.5407 - 7.36343i) q^{51} +(-9.62611 - 5.55764i) q^{53} +2.60508i q^{55} +(2.58602 + 5.52983i) q^{57} +(2.00138 + 3.46649i) q^{59} +(-7.09004 - 4.09344i) q^{61} +(-6.73119 - 4.20608i) q^{63} +(-6.93830 - 4.00583i) q^{65} +(4.96334 + 8.59676i) q^{67} +(-10.0301 - 0.866397i) q^{69} +3.67194i q^{71} +(6.92803 + 3.99990i) q^{73} +(0.0100516 - 0.116365i) q^{75} +(1.16887 - 2.87483i) q^{77} +(-2.25993 + 3.91432i) q^{79} +(8.47071 + 3.04091i) q^{81} +(0.390969 + 0.677179i) q^{83} +(8.24363 - 14.2784i) q^{85} +(-5.12092 - 10.9504i) q^{87} +(1.75440 + 3.03870i) q^{89} +(5.85938 + 7.53375i) q^{91} +(-5.83334 - 12.4738i) q^{93} +(-6.77900 + 3.91386i) q^{95} +(-3.49226 + 2.01626i) q^{97} +(-0.603418 + 3.46677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.149059 + 1.72562i −0.0860590 + 0.996290i
\(4\) 0 0
\(5\) −2.22094 −0.993234 −0.496617 0.867970i \(-0.665425\pi\)
−0.496617 + 0.867970i \(0.665425\pi\)
\(6\) 0 0
\(7\) 2.45091 + 0.996507i 0.926358 + 0.376644i
\(8\) 0 0
\(9\) −2.95556 0.514438i −0.985188 0.171479i
\(10\) 0 0
\(11\) 1.17296i 0.353662i −0.984241 0.176831i \(-0.943415\pi\)
0.984241 0.176831i \(-0.0565846\pi\)
\(12\) 0 0
\(13\) 3.12404 + 1.80366i 0.866453 + 0.500247i 0.866168 0.499753i \(-0.166576\pi\)
0.000284763 1.00000i \(0.499909\pi\)
\(14\) 0 0
\(15\) 0.331050 3.83251i 0.0854767 0.989549i
\(16\) 0 0
\(17\) −3.71178 + 6.42899i −0.900238 + 1.55926i −0.0730533 + 0.997328i \(0.523274\pi\)
−0.827185 + 0.561930i \(0.810059\pi\)
\(18\) 0 0
\(19\) 3.05231 1.76225i 0.700249 0.404289i −0.107191 0.994238i \(-0.534186\pi\)
0.807440 + 0.589950i \(0.200852\pi\)
\(20\) 0 0
\(21\) −2.08493 + 4.08082i −0.454969 + 0.890508i
\(22\) 0 0
\(23\) 5.81246i 1.21198i 0.795472 + 0.605991i \(0.207223\pi\)
−0.795472 + 0.605991i \(0.792777\pi\)
\(24\) 0 0
\(25\) −0.0674336 −0.0134867
\(26\) 0 0
\(27\) 1.32828 5.02351i 0.255628 0.966775i
\(28\) 0 0
\(29\) −6.04430 + 3.48968i −1.12240 + 0.648017i −0.942012 0.335579i \(-0.891068\pi\)
−0.180387 + 0.983596i \(0.557735\pi\)
\(30\) 0 0
\(31\) −6.88517 + 3.97516i −1.23661 + 0.713959i −0.968400 0.249400i \(-0.919766\pi\)
−0.268213 + 0.963360i \(0.586433\pi\)
\(32\) 0 0
\(33\) 2.02410 + 0.174840i 0.352350 + 0.0304358i
\(34\) 0 0
\(35\) −5.44333 2.21318i −0.920090 0.374096i
\(36\) 0 0
\(37\) −5.54350 9.60163i −0.911346 1.57850i −0.812164 0.583429i \(-0.801711\pi\)
−0.0991818 0.995069i \(-0.531623\pi\)
\(38\) 0 0
\(39\) −3.57811 + 5.12207i −0.572957 + 0.820187i
\(40\) 0 0
\(41\) −0.809022 + 1.40127i −0.126348 + 0.218841i −0.922259 0.386572i \(-0.873659\pi\)
0.795911 + 0.605414i \(0.206992\pi\)
\(42\) 0 0
\(43\) −0.904302 1.56630i −0.137905 0.238858i 0.788799 0.614652i \(-0.210703\pi\)
−0.926703 + 0.375794i \(0.877370\pi\)
\(44\) 0 0
\(45\) 6.56412 + 1.14254i 0.978522 + 0.170319i
\(46\) 0 0
\(47\) 4.26476 7.38679i 0.622080 1.07747i −0.367018 0.930214i \(-0.619621\pi\)
0.989098 0.147260i \(-0.0470454\pi\)
\(48\) 0 0
\(49\) 5.01395 + 4.88471i 0.716278 + 0.697815i
\(50\) 0 0
\(51\) −10.5407 7.36343i −1.47600 1.03109i
\(52\) 0 0
\(53\) −9.62611 5.55764i −1.32225 0.763400i −0.338161 0.941088i \(-0.609805\pi\)
−0.984087 + 0.177688i \(0.943138\pi\)
\(54\) 0 0
\(55\) 2.60508i 0.351269i
\(56\) 0 0
\(57\) 2.58602 + 5.52983i 0.342526 + 0.732444i
\(58\) 0 0
\(59\) 2.00138 + 3.46649i 0.260557 + 0.451298i 0.966390 0.257080i \(-0.0827604\pi\)
−0.705833 + 0.708378i \(0.749427\pi\)
\(60\) 0 0
\(61\) −7.09004 4.09344i −0.907787 0.524111i −0.0280684 0.999606i \(-0.508936\pi\)
−0.879718 + 0.475495i \(0.842269\pi\)
\(62\) 0 0
\(63\) −6.73119 4.20608i −0.848050 0.529917i
\(64\) 0 0
\(65\) −6.93830 4.00583i −0.860590 0.496862i
\(66\) 0 0
\(67\) 4.96334 + 8.59676i 0.606369 + 1.05026i 0.991834 + 0.127539i \(0.0407079\pi\)
−0.385465 + 0.922723i \(0.625959\pi\)
\(68\) 0 0
\(69\) −10.0301 0.866397i −1.20749 0.104302i
\(70\) 0 0
\(71\) 3.67194i 0.435779i 0.975973 + 0.217890i \(0.0699172\pi\)
−0.975973 + 0.217890i \(0.930083\pi\)
\(72\) 0 0
\(73\) 6.92803 + 3.99990i 0.810865 + 0.468153i 0.847256 0.531185i \(-0.178253\pi\)
−0.0363913 + 0.999338i \(0.511586\pi\)
\(74\) 0 0
\(75\) 0.0100516 0.116365i 0.00116065 0.0134367i
\(76\) 0 0
\(77\) 1.16887 2.87483i 0.133205 0.327618i
\(78\) 0 0
\(79\) −2.25993 + 3.91432i −0.254262 + 0.440395i −0.964695 0.263370i \(-0.915166\pi\)
0.710433 + 0.703765i \(0.248499\pi\)
\(80\) 0 0
\(81\) 8.47071 + 3.04091i 0.941190 + 0.337879i
\(82\) 0 0
\(83\) 0.390969 + 0.677179i 0.0429145 + 0.0743300i 0.886685 0.462374i \(-0.153002\pi\)
−0.843770 + 0.536704i \(0.819669\pi\)
\(84\) 0 0
\(85\) 8.24363 14.2784i 0.894147 1.54871i
\(86\) 0 0
\(87\) −5.12092 10.9504i −0.549021 1.17400i
\(88\) 0 0
\(89\) 1.75440 + 3.03870i 0.185966 + 0.322102i 0.943901 0.330227i \(-0.107125\pi\)
−0.757936 + 0.652329i \(0.773792\pi\)
\(90\) 0 0
\(91\) 5.85938 + 7.53375i 0.614230 + 0.789752i
\(92\) 0 0
\(93\) −5.83334 12.4738i −0.604889 1.29347i
\(94\) 0 0
\(95\) −6.77900 + 3.91386i −0.695511 + 0.401553i
\(96\) 0 0
\(97\) −3.49226 + 2.01626i −0.354585 + 0.204720i −0.666703 0.745324i \(-0.732295\pi\)
0.312118 + 0.950043i \(0.398962\pi\)
\(98\) 0 0
\(99\) −0.603418 + 3.46677i −0.0606458 + 0.348424i
\(100\) 0 0
\(101\) 2.27809 0.226678 0.113339 0.993556i \(-0.463845\pi\)
0.113339 + 0.993556i \(0.463845\pi\)
\(102\) 0 0
\(103\) 8.87303i 0.874285i 0.899392 + 0.437143i \(0.144010\pi\)
−0.899392 + 0.437143i \(0.855990\pi\)
\(104\) 0 0
\(105\) 4.63050 9.06324i 0.451890 0.884482i
\(106\) 0 0
\(107\) 0.574764 0.331840i 0.0555646 0.0320802i −0.471960 0.881620i \(-0.656453\pi\)
0.527525 + 0.849540i \(0.323120\pi\)
\(108\) 0 0
\(109\) −8.03435 + 13.9159i −0.769551 + 1.33290i 0.168256 + 0.985743i \(0.446187\pi\)
−0.937807 + 0.347158i \(0.887147\pi\)
\(110\) 0 0
\(111\) 17.3951 8.13480i 1.65107 0.772121i
\(112\) 0 0
\(113\) −4.86666 2.80977i −0.457817 0.264321i 0.253309 0.967385i \(-0.418481\pi\)
−0.711126 + 0.703065i \(0.751814\pi\)
\(114\) 0 0
\(115\) 12.9091i 1.20378i
\(116\) 0 0
\(117\) −8.30542 6.93797i −0.767836 0.641416i
\(118\) 0 0
\(119\) −15.5038 + 12.0581i −1.42123 + 1.10536i
\(120\) 0 0
\(121\) 9.62415 0.874923
\(122\) 0 0
\(123\) −2.29747 1.60494i −0.207156 0.144713i
\(124\) 0 0
\(125\) 11.2545 1.00663
\(126\) 0 0
\(127\) −7.74425 −0.687191 −0.343595 0.939118i \(-0.611645\pi\)
−0.343595 + 0.939118i \(0.611645\pi\)
\(128\) 0 0
\(129\) 2.83764 1.32702i 0.249840 0.116837i
\(130\) 0 0
\(131\) 15.6259 1.36524 0.682619 0.730774i \(-0.260841\pi\)
0.682619 + 0.730774i \(0.260841\pi\)
\(132\) 0 0
\(133\) 9.23705 1.27748i 0.800954 0.110771i
\(134\) 0 0
\(135\) −2.95003 + 11.1569i −0.253898 + 0.960234i
\(136\) 0 0
\(137\) 1.07565i 0.0918991i −0.998944 0.0459496i \(-0.985369\pi\)
0.998944 0.0459496i \(-0.0146313\pi\)
\(138\) 0 0
\(139\) −5.81776 3.35889i −0.493456 0.284897i 0.232551 0.972584i \(-0.425293\pi\)
−0.726007 + 0.687687i \(0.758626\pi\)
\(140\) 0 0
\(141\) 12.1111 + 8.46045i 1.01994 + 0.712498i
\(142\) 0 0
\(143\) 2.11563 3.66439i 0.176918 0.306431i
\(144\) 0 0
\(145\) 13.4240 7.75036i 1.11480 0.643633i
\(146\) 0 0
\(147\) −9.17654 + 7.92408i −0.756868 + 0.653567i
\(148\) 0 0
\(149\) 17.5635i 1.43886i 0.694565 + 0.719430i \(0.255597\pi\)
−0.694565 + 0.719430i \(0.744403\pi\)
\(150\) 0 0
\(151\) −1.69606 −0.138023 −0.0690115 0.997616i \(-0.521985\pi\)
−0.0690115 + 0.997616i \(0.521985\pi\)
\(152\) 0 0
\(153\) 14.2777 17.0918i 1.15428 1.38179i
\(154\) 0 0
\(155\) 15.2915 8.82858i 1.22825 0.709128i
\(156\) 0 0
\(157\) 6.82630 3.94116i 0.544798 0.314539i −0.202223 0.979339i \(-0.564817\pi\)
0.747021 + 0.664800i \(0.231483\pi\)
\(158\) 0 0
\(159\) 11.0253 15.7826i 0.874360 1.25165i
\(160\) 0 0
\(161\) −5.79216 + 14.2458i −0.456486 + 1.12273i
\(162\) 0 0
\(163\) 5.69385 + 9.86204i 0.445977 + 0.772455i 0.998120 0.0612949i \(-0.0195230\pi\)
−0.552143 + 0.833750i \(0.686190\pi\)
\(164\) 0 0
\(165\) −4.49539 0.388310i −0.349966 0.0302299i
\(166\) 0 0
\(167\) −8.05638 + 13.9541i −0.623422 + 1.07980i 0.365422 + 0.930842i \(0.380925\pi\)
−0.988844 + 0.148956i \(0.952409\pi\)
\(168\) 0 0
\(169\) 0.00641296 + 0.0111076i 0.000493305 + 0.000854429i
\(170\) 0 0
\(171\) −9.92788 + 3.63823i −0.759204 + 0.278222i
\(172\) 0 0
\(173\) 3.45182 5.97872i 0.262437 0.454554i −0.704452 0.709752i \(-0.748807\pi\)
0.966889 + 0.255198i \(0.0821405\pi\)
\(174\) 0 0
\(175\) −0.165274 0.0671981i −0.0124935 0.00507970i
\(176\) 0 0
\(177\) −6.28018 + 2.93692i −0.472047 + 0.220752i
\(178\) 0 0
\(179\) 5.28759 + 3.05279i 0.395213 + 0.228176i 0.684416 0.729091i \(-0.260057\pi\)
−0.289203 + 0.957268i \(0.593390\pi\)
\(180\) 0 0
\(181\) 5.46329i 0.406083i 0.979170 + 0.203041i \(0.0650826\pi\)
−0.979170 + 0.203041i \(0.934917\pi\)
\(182\) 0 0
\(183\) 8.12057 11.6246i 0.600290 0.859315i
\(184\) 0 0
\(185\) 12.3118 + 21.3246i 0.905180 + 1.56782i
\(186\) 0 0
\(187\) 7.54097 + 4.35378i 0.551451 + 0.318380i
\(188\) 0 0
\(189\) 8.26147 10.9885i 0.600933 0.799299i
\(190\) 0 0
\(191\) −5.21032 3.00818i −0.377005 0.217664i 0.299509 0.954093i \(-0.403177\pi\)
−0.676515 + 0.736429i \(0.736510\pi\)
\(192\) 0 0
\(193\) 2.89017 + 5.00592i 0.208039 + 0.360334i 0.951097 0.308893i \(-0.0999586\pi\)
−0.743058 + 0.669227i \(0.766625\pi\)
\(194\) 0 0
\(195\) 7.94677 11.3758i 0.569080 0.814638i
\(196\) 0 0
\(197\) 7.95354i 0.566666i −0.959022 0.283333i \(-0.908560\pi\)
0.959022 0.283333i \(-0.0914402\pi\)
\(198\) 0 0
\(199\) 15.5229 + 8.96214i 1.10039 + 0.635309i 0.936323 0.351141i \(-0.114206\pi\)
0.164065 + 0.986450i \(0.447539\pi\)
\(200\) 0 0
\(201\) −15.5746 + 7.28345i −1.09855 + 0.513735i
\(202\) 0 0
\(203\) −18.2915 + 2.52971i −1.28382 + 0.177551i
\(204\) 0 0
\(205\) 1.79679 3.11213i 0.125493 0.217360i
\(206\) 0 0
\(207\) 2.99015 17.1791i 0.207830 1.19403i
\(208\) 0 0
\(209\) −2.06706 3.58026i −0.142982 0.247651i
\(210\) 0 0
\(211\) 4.00200 6.93166i 0.275509 0.477195i −0.694755 0.719247i \(-0.744487\pi\)
0.970263 + 0.242052i \(0.0778203\pi\)
\(212\) 0 0
\(213\) −6.33639 0.547334i −0.434162 0.0375027i
\(214\) 0 0
\(215\) 2.00840 + 3.47865i 0.136972 + 0.237242i
\(216\) 0 0
\(217\) −20.8362 + 2.88164i −1.41446 + 0.195618i
\(218\) 0 0
\(219\) −7.93501 + 11.3590i −0.536198 + 0.767568i
\(220\) 0 0
\(221\) −23.1915 + 13.3896i −1.56003 + 0.900682i
\(222\) 0 0
\(223\) 14.2405 8.22177i 0.953616 0.550570i 0.0594134 0.998233i \(-0.481077\pi\)
0.894202 + 0.447663i \(0.147744\pi\)
\(224\) 0 0
\(225\) 0.199304 + 0.0346904i 0.0132869 + 0.00231269i
\(226\) 0 0
\(227\) 15.9930 1.06149 0.530746 0.847531i \(-0.321912\pi\)
0.530746 + 0.847531i \(0.321912\pi\)
\(228\) 0 0
\(229\) 15.4612i 1.02170i 0.859669 + 0.510851i \(0.170670\pi\)
−0.859669 + 0.510851i \(0.829330\pi\)
\(230\) 0 0
\(231\) 4.78665 + 2.44555i 0.314939 + 0.160905i
\(232\) 0 0
\(233\) 16.5268 9.54175i 1.08271 0.625101i 0.151081 0.988521i \(-0.451725\pi\)
0.931625 + 0.363421i \(0.118391\pi\)
\(234\) 0 0
\(235\) −9.47178 + 16.4056i −0.617871 + 1.07018i
\(236\) 0 0
\(237\) −6.41778 4.48326i −0.416880 0.291219i
\(238\) 0 0
\(239\) −7.37626 4.25868i −0.477130 0.275471i 0.242089 0.970254i \(-0.422167\pi\)
−0.719220 + 0.694783i \(0.755501\pi\)
\(240\) 0 0
\(241\) 22.6376i 1.45821i 0.684400 + 0.729107i \(0.260064\pi\)
−0.684400 + 0.729107i \(0.739936\pi\)
\(242\) 0 0
\(243\) −6.51010 + 14.1640i −0.417623 + 0.908620i
\(244\) 0 0
\(245\) −11.1357 10.8486i −0.711431 0.693093i
\(246\) 0 0
\(247\) 12.7141 0.808976
\(248\) 0 0
\(249\) −1.22683 + 0.573727i −0.0777474 + 0.0363585i
\(250\) 0 0
\(251\) −7.74235 −0.488693 −0.244346 0.969688i \(-0.578573\pi\)
−0.244346 + 0.969688i \(0.578573\pi\)
\(252\) 0 0
\(253\) 6.81781 0.428632
\(254\) 0 0
\(255\) 23.4103 + 16.3537i 1.46601 + 1.02411i
\(256\) 0 0
\(257\) −23.7890 −1.48392 −0.741958 0.670447i \(-0.766103\pi\)
−0.741958 + 0.670447i \(0.766103\pi\)
\(258\) 0 0
\(259\) −4.01855 29.0569i −0.249700 1.80551i
\(260\) 0 0
\(261\) 19.6595 7.20455i 1.21690 0.445950i
\(262\) 0 0
\(263\) 20.5341i 1.26619i −0.774075 0.633094i \(-0.781785\pi\)
0.774075 0.633094i \(-0.218215\pi\)
\(264\) 0 0
\(265\) 21.3790 + 12.3432i 1.31330 + 0.758235i
\(266\) 0 0
\(267\) −5.50517 + 2.57448i −0.336911 + 0.157556i
\(268\) 0 0
\(269\) 6.17188 10.6900i 0.376306 0.651782i −0.614215 0.789138i \(-0.710527\pi\)
0.990522 + 0.137357i \(0.0438607\pi\)
\(270\) 0 0
\(271\) 25.3900 14.6589i 1.54233 0.890467i 0.543643 0.839317i \(-0.317045\pi\)
0.998691 0.0511505i \(-0.0162888\pi\)
\(272\) 0 0
\(273\) −13.8738 + 8.98812i −0.839682 + 0.543986i
\(274\) 0 0
\(275\) 0.0790972i 0.00476974i
\(276\) 0 0
\(277\) −2.48230 −0.149147 −0.0745735 0.997216i \(-0.523760\pi\)
−0.0745735 + 0.997216i \(0.523760\pi\)
\(278\) 0 0
\(279\) 22.3945 8.20683i 1.34073 0.491330i
\(280\) 0 0
\(281\) 20.0970 11.6030i 1.19889 0.692178i 0.238581 0.971123i \(-0.423318\pi\)
0.960307 + 0.278944i \(0.0899845\pi\)
\(282\) 0 0
\(283\) 23.6425 13.6500i 1.40540 0.811408i 0.410460 0.911879i \(-0.365368\pi\)
0.994940 + 0.100471i \(0.0320349\pi\)
\(284\) 0 0
\(285\) −5.74338 12.2814i −0.340209 0.727488i
\(286\) 0 0
\(287\) −3.37922 + 2.62819i −0.199469 + 0.155137i
\(288\) 0 0
\(289\) −19.0546 33.0035i −1.12086 1.94138i
\(290\) 0 0
\(291\) −2.95875 6.32687i −0.173445 0.370888i
\(292\) 0 0
\(293\) 4.15628 7.19888i 0.242812 0.420563i −0.718702 0.695318i \(-0.755263\pi\)
0.961514 + 0.274755i \(0.0885968\pi\)
\(294\) 0 0
\(295\) −4.44494 7.69886i −0.258794 0.448245i
\(296\) 0 0
\(297\) −5.89240 1.55803i −0.341912 0.0904058i
\(298\) 0 0
\(299\) −10.4837 + 18.1584i −0.606290 + 1.05012i
\(300\) 0 0
\(301\) −0.655539 4.74000i −0.0377846 0.273209i
\(302\) 0 0
\(303\) −0.339569 + 3.93113i −0.0195077 + 0.225837i
\(304\) 0 0
\(305\) 15.7465 + 9.09127i 0.901645 + 0.520565i
\(306\) 0 0
\(307\) 22.4908i 1.28362i −0.766864 0.641810i \(-0.778184\pi\)
0.766864 0.641810i \(-0.221816\pi\)
\(308\) 0 0
\(309\) −15.3115 1.32260i −0.871042 0.0752401i
\(310\) 0 0
\(311\) −4.83900 8.38139i −0.274394 0.475265i 0.695588 0.718441i \(-0.255144\pi\)
−0.969982 + 0.243176i \(0.921811\pi\)
\(312\) 0 0
\(313\) 21.2150 + 12.2485i 1.19914 + 0.692324i 0.960363 0.278751i \(-0.0899204\pi\)
0.238776 + 0.971075i \(0.423254\pi\)
\(314\) 0 0
\(315\) 14.9495 + 9.34145i 0.842312 + 0.526331i
\(316\) 0 0
\(317\) 7.95548 + 4.59310i 0.446824 + 0.257974i 0.706488 0.707725i \(-0.250278\pi\)
−0.259664 + 0.965699i \(0.583612\pi\)
\(318\) 0 0
\(319\) 4.09327 + 7.08975i 0.229179 + 0.396950i
\(320\) 0 0
\(321\) 0.486958 + 1.04129i 0.0271794 + 0.0581192i
\(322\) 0 0
\(323\) 26.1644i 1.45582i
\(324\) 0 0
\(325\) −0.210665 0.121628i −0.0116856 0.00674668i
\(326\) 0 0
\(327\) −22.8160 15.9386i −1.26173 0.881404i
\(328\) 0 0
\(329\) 17.8136 13.8545i 0.982093 0.763823i
\(330\) 0 0
\(331\) 12.8599 22.2739i 0.706842 1.22429i −0.259181 0.965829i \(-0.583453\pi\)
0.966023 0.258457i \(-0.0832141\pi\)
\(332\) 0 0
\(333\) 11.4447 + 31.2300i 0.627167 + 1.71139i
\(334\) 0 0
\(335\) −11.0233 19.0929i −0.602266 1.04316i
\(336\) 0 0
\(337\) 8.80657 15.2534i 0.479724 0.830907i −0.520005 0.854163i \(-0.674070\pi\)
0.999730 + 0.0232560i \(0.00740329\pi\)
\(338\) 0 0
\(339\) 5.57402 7.97921i 0.302739 0.433371i
\(340\) 0 0
\(341\) 4.66272 + 8.07606i 0.252500 + 0.437343i
\(342\) 0 0
\(343\) 7.42110 + 16.9684i 0.400702 + 0.916209i
\(344\) 0 0
\(345\) 22.2763 + 1.92421i 1.19932 + 0.103596i
\(346\) 0 0
\(347\) −7.23389 + 4.17649i −0.388335 + 0.224206i −0.681439 0.731875i \(-0.738645\pi\)
0.293103 + 0.956081i \(0.405312\pi\)
\(348\) 0 0
\(349\) −16.4062 + 9.47211i −0.878203 + 0.507031i −0.870065 0.492936i \(-0.835924\pi\)
−0.00813729 + 0.999967i \(0.502590\pi\)
\(350\) 0 0
\(351\) 13.2103 13.2979i 0.705115 0.709788i
\(352\) 0 0
\(353\) 25.4971 1.35707 0.678537 0.734566i \(-0.262614\pi\)
0.678537 + 0.734566i \(0.262614\pi\)
\(354\) 0 0
\(355\) 8.15515i 0.432830i
\(356\) 0 0
\(357\) −18.4967 28.5511i −0.978951 1.51108i
\(358\) 0 0
\(359\) 17.4128 10.0533i 0.919013 0.530592i 0.0356928 0.999363i \(-0.488636\pi\)
0.883320 + 0.468771i \(0.155303\pi\)
\(360\) 0 0
\(361\) −3.28892 + 5.69658i −0.173101 + 0.299820i
\(362\) 0 0
\(363\) −1.43456 + 16.6077i −0.0752950 + 0.871677i
\(364\) 0 0
\(365\) −15.3867 8.88353i −0.805378 0.464985i
\(366\) 0 0
\(367\) 23.2850i 1.21547i 0.794140 + 0.607735i \(0.207922\pi\)
−0.794140 + 0.607735i \(0.792078\pi\)
\(368\) 0 0
\(369\) 3.11198 3.72534i 0.162003 0.193934i
\(370\) 0 0
\(371\) −18.0545 23.2138i −0.937345 1.20520i
\(372\) 0 0
\(373\) −25.1249 −1.30092 −0.650460 0.759540i \(-0.725424\pi\)
−0.650460 + 0.759540i \(0.725424\pi\)
\(374\) 0 0
\(375\) −1.67757 + 19.4210i −0.0866295 + 1.00289i
\(376\) 0 0
\(377\) −25.1768 −1.29667
\(378\) 0 0
\(379\) −32.3000 −1.65914 −0.829569 0.558404i \(-0.811414\pi\)
−0.829569 + 0.558404i \(0.811414\pi\)
\(380\) 0 0
\(381\) 1.15435 13.3637i 0.0591390 0.684641i
\(382\) 0 0
\(383\) −9.54363 −0.487657 −0.243828 0.969818i \(-0.578403\pi\)
−0.243828 + 0.969818i \(0.578403\pi\)
\(384\) 0 0
\(385\) −2.59598 + 6.38483i −0.132304 + 0.325401i
\(386\) 0 0
\(387\) 1.86696 + 5.09450i 0.0949028 + 0.258968i
\(388\) 0 0
\(389\) 13.6201i 0.690566i −0.938499 0.345283i \(-0.887783\pi\)
0.938499 0.345283i \(-0.112217\pi\)
\(390\) 0 0
\(391\) −37.3682 21.5746i −1.88979 1.09107i
\(392\) 0 0
\(393\) −2.32917 + 26.9644i −0.117491 + 1.36017i
\(394\) 0 0
\(395\) 5.01917 8.69346i 0.252542 0.437415i
\(396\) 0 0
\(397\) 2.59589 1.49874i 0.130284 0.0752196i −0.433441 0.901182i \(-0.642701\pi\)
0.563726 + 0.825962i \(0.309368\pi\)
\(398\) 0 0
\(399\) 0.827585 + 16.1301i 0.0414311 + 0.807516i
\(400\) 0 0
\(401\) 13.0336i 0.650869i 0.945565 + 0.325434i \(0.105511\pi\)
−0.945565 + 0.325434i \(0.894489\pi\)
\(402\) 0 0
\(403\) −28.6794 −1.42862
\(404\) 0 0
\(405\) −18.8129 6.75367i −0.934821 0.335593i
\(406\) 0 0
\(407\) −11.2624 + 6.50233i −0.558255 + 0.322309i
\(408\) 0 0
\(409\) −28.4682 + 16.4361i −1.40766 + 0.812714i −0.995162 0.0982431i \(-0.968678\pi\)
−0.412500 + 0.910958i \(0.635344\pi\)
\(410\) 0 0
\(411\) 1.85617 + 0.160335i 0.0915582 + 0.00790875i
\(412\) 0 0
\(413\) 1.45082 + 10.4905i 0.0713903 + 0.516201i
\(414\) 0 0
\(415\) −0.868319 1.50397i −0.0426241 0.0738271i
\(416\) 0 0
\(417\) 6.66337 9.53861i 0.326307 0.467108i
\(418\) 0 0
\(419\) −11.0687 + 19.1716i −0.540742 + 0.936593i 0.458119 + 0.888891i \(0.348523\pi\)
−0.998862 + 0.0477024i \(0.984810\pi\)
\(420\) 0 0
\(421\) 12.1963 + 21.1245i 0.594409 + 1.02955i 0.993630 + 0.112692i \(0.0359472\pi\)
−0.399221 + 0.916855i \(0.630719\pi\)
\(422\) 0 0
\(423\) −16.4048 + 19.6382i −0.797630 + 0.954840i
\(424\) 0 0
\(425\) 0.250298 0.433529i 0.0121413 0.0210293i
\(426\) 0 0
\(427\) −13.2979 17.0979i −0.643532 0.827427i
\(428\) 0 0
\(429\) 6.00800 + 4.19700i 0.290069 + 0.202633i
\(430\) 0 0
\(431\) 12.2611 + 7.07897i 0.590598 + 0.340982i 0.765334 0.643634i \(-0.222574\pi\)
−0.174736 + 0.984615i \(0.555907\pi\)
\(432\) 0 0
\(433\) 8.90220i 0.427813i −0.976854 0.213906i \(-0.931381\pi\)
0.976854 0.213906i \(-0.0686187\pi\)
\(434\) 0 0
\(435\) 11.3733 + 24.3201i 0.545306 + 1.16606i
\(436\) 0 0
\(437\) 10.2430 + 17.7415i 0.489991 + 0.848689i
\(438\) 0 0
\(439\) 13.9971 + 8.08120i 0.668043 + 0.385695i 0.795335 0.606171i \(-0.207295\pi\)
−0.127292 + 0.991865i \(0.540628\pi\)
\(440\) 0 0
\(441\) −12.3062 17.0164i −0.586007 0.810306i
\(442\) 0 0
\(443\) 15.1101 + 8.72383i 0.717903 + 0.414482i 0.813980 0.580892i \(-0.197296\pi\)
−0.0960772 + 0.995374i \(0.530630\pi\)
\(444\) 0 0
\(445\) −3.89640 6.74877i −0.184707 0.319922i
\(446\) 0 0
\(447\) −30.3080 2.61799i −1.43352 0.123827i
\(448\) 0 0
\(449\) 9.14988i 0.431809i 0.976414 + 0.215905i \(0.0692700\pi\)
−0.976414 + 0.215905i \(0.930730\pi\)
\(450\) 0 0
\(451\) 1.64364 + 0.948954i 0.0773958 + 0.0446845i
\(452\) 0 0
\(453\) 0.252812 2.92676i 0.0118781 0.137511i
\(454\) 0 0
\(455\) −13.0133 16.7320i −0.610074 0.784408i
\(456\) 0 0
\(457\) −7.05757 + 12.2241i −0.330139 + 0.571818i −0.982539 0.186057i \(-0.940429\pi\)
0.652400 + 0.757875i \(0.273762\pi\)
\(458\) 0 0
\(459\) 27.3658 + 27.1856i 1.27733 + 1.26892i
\(460\) 0 0
\(461\) −17.5323 30.3668i −0.816561 1.41432i −0.908202 0.418532i \(-0.862545\pi\)
0.0916412 0.995792i \(-0.470789\pi\)
\(462\) 0 0
\(463\) −15.9985 + 27.7103i −0.743515 + 1.28781i 0.207370 + 0.978263i \(0.433510\pi\)
−0.950885 + 0.309543i \(0.899824\pi\)
\(464\) 0 0
\(465\) 12.9555 + 27.7034i 0.600796 + 1.28472i
\(466\) 0 0
\(467\) 8.02671 + 13.9027i 0.371432 + 0.643339i 0.989786 0.142561i \(-0.0455337\pi\)
−0.618354 + 0.785899i \(0.712200\pi\)
\(468\) 0 0
\(469\) 3.59798 + 26.0159i 0.166139 + 1.20130i
\(470\) 0 0
\(471\) 5.78345 + 12.3671i 0.266487 + 0.569846i
\(472\) 0 0
\(473\) −1.83721 + 1.06071i −0.0844751 + 0.0487717i
\(474\) 0 0
\(475\) −0.205828 + 0.118835i −0.00944406 + 0.00545253i
\(476\) 0 0
\(477\) 25.5915 + 21.3780i 1.17176 + 0.978831i
\(478\) 0 0
\(479\) −31.4961 −1.43909 −0.719547 0.694443i \(-0.755651\pi\)
−0.719547 + 0.694443i \(0.755651\pi\)
\(480\) 0 0
\(481\) 39.9945i 1.82359i
\(482\) 0 0
\(483\) −23.7196 12.1186i −1.07928 0.551413i
\(484\) 0 0
\(485\) 7.75609 4.47798i 0.352186 0.203335i
\(486\) 0 0
\(487\) −10.7924 + 18.6930i −0.489052 + 0.847062i −0.999921 0.0125963i \(-0.995990\pi\)
0.510869 + 0.859659i \(0.329324\pi\)
\(488\) 0 0
\(489\) −17.8669 + 8.35543i −0.807969 + 0.377846i
\(490\) 0 0
\(491\) 28.9290 + 16.7022i 1.30555 + 0.753758i 0.981349 0.192232i \(-0.0615726\pi\)
0.324197 + 0.945990i \(0.394906\pi\)
\(492\) 0 0
\(493\) 51.8116i 2.33348i
\(494\) 0 0
\(495\) 1.34015 7.69948i 0.0602355 0.346066i
\(496\) 0 0
\(497\) −3.65911 + 8.99960i −0.164134 + 0.403687i
\(498\) 0 0
\(499\) −32.1443 −1.43898 −0.719489 0.694504i \(-0.755624\pi\)
−0.719489 + 0.694504i \(0.755624\pi\)
\(500\) 0 0
\(501\) −22.8786 15.9823i −1.02214 0.714035i
\(502\) 0 0
\(503\) 21.7295 0.968872 0.484436 0.874827i \(-0.339025\pi\)
0.484436 + 0.874827i \(0.339025\pi\)
\(504\) 0 0
\(505\) −5.05949 −0.225145
\(506\) 0 0
\(507\) −0.0201234 + 0.00941069i −0.000893713 + 0.000417943i
\(508\) 0 0
\(509\) 23.8864 1.05875 0.529373 0.848389i \(-0.322427\pi\)
0.529373 + 0.848389i \(0.322427\pi\)
\(510\) 0 0
\(511\) 12.9941 + 16.7072i 0.574824 + 0.739085i
\(512\) 0 0
\(513\) −4.79838 17.6741i −0.211854 0.780331i
\(514\) 0 0
\(515\) 19.7064i 0.868370i
\(516\) 0 0
\(517\) −8.66444 5.00242i −0.381062 0.220006i
\(518\) 0 0
\(519\) 9.80251 + 6.84772i 0.430283 + 0.300582i
\(520\) 0 0
\(521\) 13.5098 23.3996i 0.591874 1.02516i −0.402106 0.915593i \(-0.631722\pi\)
0.993980 0.109562i \(-0.0349449\pi\)
\(522\) 0 0
\(523\) −27.2136 + 15.7118i −1.18997 + 0.687028i −0.958299 0.285766i \(-0.907752\pi\)
−0.231669 + 0.972795i \(0.574418\pi\)
\(524\) 0 0
\(525\) 0.140594 0.275184i 0.00613603 0.0120100i
\(526\) 0 0
\(527\) 59.0196i 2.57093i
\(528\) 0 0
\(529\) −10.7847 −0.468899
\(530\) 0 0
\(531\) −4.13190 11.2750i −0.179309 0.489294i
\(532\) 0 0
\(533\) −5.05483 + 2.91841i −0.218949 + 0.126410i
\(534\) 0 0
\(535\) −1.27652 + 0.736997i −0.0551886 + 0.0318632i
\(536\) 0 0
\(537\) −6.05613 + 8.66935i −0.261341 + 0.374110i
\(538\) 0 0
\(539\) 5.72959 5.88118i 0.246791 0.253320i
\(540\) 0 0
\(541\) −0.0969057 0.167846i −0.00416630 0.00721624i 0.863935 0.503604i \(-0.167993\pi\)
−0.868101 + 0.496388i \(0.834660\pi\)
\(542\) 0 0
\(543\) −9.42758 0.814350i −0.404576 0.0349471i
\(544\) 0 0
\(545\) 17.8438 30.9064i 0.764344 1.32388i
\(546\) 0 0
\(547\) −0.987053 1.70963i −0.0422033 0.0730983i 0.844152 0.536104i \(-0.180104\pi\)
−0.886355 + 0.463005i \(0.846771\pi\)
\(548\) 0 0
\(549\) 18.8492 + 15.7458i 0.804466 + 0.672015i
\(550\) 0 0
\(551\) −12.2994 + 21.3032i −0.523972 + 0.907547i
\(552\) 0 0
\(553\) −9.43955 + 7.34161i −0.401410 + 0.312197i
\(554\) 0 0
\(555\) −38.6335 + 18.0669i −1.63990 + 0.766897i
\(556\) 0 0
\(557\) −18.3383 10.5876i −0.777018 0.448612i 0.0583543 0.998296i \(-0.481415\pi\)
−0.835373 + 0.549684i \(0.814748\pi\)
\(558\) 0 0
\(559\) 6.52423i 0.275946i
\(560\) 0 0
\(561\) −8.63704 + 12.3639i −0.364656 + 0.522005i
\(562\) 0 0
\(563\) 17.0645 + 29.5565i 0.719182 + 1.24566i 0.961324 + 0.275419i \(0.0888165\pi\)
−0.242142 + 0.970241i \(0.577850\pi\)
\(564\) 0 0
\(565\) 10.8085 + 6.24032i 0.454719 + 0.262532i
\(566\) 0 0
\(567\) 17.7307 + 15.8941i 0.744618 + 0.667491i
\(568\) 0 0
\(569\) 9.55993 + 5.51943i 0.400773 + 0.231387i 0.686818 0.726830i \(-0.259007\pi\)
−0.286044 + 0.958216i \(0.592340\pi\)
\(570\) 0 0
\(571\) 20.6616 + 35.7870i 0.864663 + 1.49764i 0.867382 + 0.497644i \(0.165801\pi\)
−0.00271871 + 0.999996i \(0.500865\pi\)
\(572\) 0 0
\(573\) 5.96763 8.54266i 0.249301 0.356875i
\(574\) 0 0
\(575\) 0.391955i 0.0163456i
\(576\) 0 0
\(577\) 12.5253 + 7.23151i 0.521437 + 0.301052i 0.737522 0.675323i \(-0.235996\pi\)
−0.216085 + 0.976374i \(0.569329\pi\)
\(578\) 0 0
\(579\) −9.06915 + 4.24117i −0.376901 + 0.176257i
\(580\) 0 0
\(581\) 0.283418 + 2.04931i 0.0117582 + 0.0850197i
\(582\) 0 0
\(583\) −6.51891 + 11.2911i −0.269986 + 0.467629i
\(584\) 0 0
\(585\) 18.4458 + 15.4088i 0.762641 + 0.637076i
\(586\) 0 0
\(587\) 0.248251 + 0.429983i 0.0102464 + 0.0177473i 0.871103 0.491100i \(-0.163405\pi\)
−0.860857 + 0.508847i \(0.830072\pi\)
\(588\) 0 0
\(589\) −14.0105 + 24.2669i −0.577292 + 0.999898i
\(590\) 0 0
\(591\) 13.7248 + 1.18554i 0.564564 + 0.0487667i
\(592\) 0 0
\(593\) 12.2302 + 21.1834i 0.502236 + 0.869898i 0.999997 + 0.00258345i \(0.000822338\pi\)
−0.497761 + 0.867314i \(0.665844\pi\)
\(594\) 0 0
\(595\) 34.4329 26.7802i 1.41161 1.09788i
\(596\) 0 0
\(597\) −17.7791 + 25.4508i −0.727650 + 1.04163i
\(598\) 0 0
\(599\) −16.3114 + 9.41741i −0.666467 + 0.384785i −0.794737 0.606954i \(-0.792391\pi\)
0.128270 + 0.991739i \(0.459058\pi\)
\(600\) 0 0
\(601\) −6.37572 + 3.68102i −0.260071 + 0.150152i −0.624367 0.781131i \(-0.714643\pi\)
0.364296 + 0.931283i \(0.381310\pi\)
\(602\) 0 0
\(603\) −10.2470 27.9616i −0.417289 1.13868i
\(604\) 0 0
\(605\) −21.3747 −0.869003
\(606\) 0 0
\(607\) 28.9923i 1.17676i −0.808584 0.588380i \(-0.799766\pi\)
0.808584 0.588380i \(-0.200234\pi\)
\(608\) 0 0
\(609\) −1.63881 31.9414i −0.0664081 1.29433i
\(610\) 0 0
\(611\) 26.6466 15.3844i 1.07801 0.622387i
\(612\) 0 0
\(613\) 12.4334 21.5352i 0.502179 0.869799i −0.497818 0.867282i \(-0.665865\pi\)
0.999997 0.00251771i \(-0.000801413\pi\)
\(614\) 0 0
\(615\) 5.10254 + 3.56447i 0.205754 + 0.143733i
\(616\) 0 0
\(617\) −37.4629 21.6292i −1.50820 0.870759i −0.999954 0.00954684i \(-0.996961\pi\)
−0.508245 0.861213i \(-0.669706\pi\)
\(618\) 0 0
\(619\) 7.45221i 0.299529i 0.988722 + 0.149765i \(0.0478516\pi\)
−0.988722 + 0.149765i \(0.952148\pi\)
\(620\) 0 0
\(621\) 29.1990 + 7.72057i 1.17171 + 0.309816i
\(622\) 0 0
\(623\) 1.27178 + 9.19586i 0.0509528 + 0.368424i
\(624\) 0 0
\(625\) −24.6583 −0.986331
\(626\) 0 0
\(627\) 6.48629 3.03331i 0.259038 0.121139i
\(628\) 0 0
\(629\) 82.3050 3.28171
\(630\) 0 0
\(631\) 9.67068 0.384984 0.192492 0.981299i \(-0.438343\pi\)
0.192492 + 0.981299i \(0.438343\pi\)
\(632\) 0 0
\(633\) 11.3649 + 7.93917i 0.451715 + 0.315554i
\(634\) 0 0
\(635\) 17.1995 0.682541
\(636\) 0 0
\(637\) 6.85339 + 24.3035i 0.271541 + 0.962939i
\(638\) 0 0
\(639\) 1.88899 10.8526i 0.0747272 0.429324i
\(640\) 0 0
\(641\) 30.9590i 1.22281i 0.791318 + 0.611404i \(0.209395\pi\)
−0.791318 + 0.611404i \(0.790605\pi\)
\(642\) 0 0
\(643\) −6.99262 4.03719i −0.275762 0.159211i 0.355741 0.934585i \(-0.384228\pi\)
−0.631503 + 0.775373i \(0.717562\pi\)
\(644\) 0 0
\(645\) −6.30221 + 2.94722i −0.248149 + 0.116047i
\(646\) 0 0
\(647\) −4.54355 + 7.86966i −0.178625 + 0.309388i −0.941410 0.337265i \(-0.890498\pi\)
0.762785 + 0.646653i \(0.223832\pi\)
\(648\) 0 0
\(649\) 4.06607 2.34755i 0.159607 0.0921492i
\(650\) 0 0
\(651\) −1.86680 36.3851i −0.0731658 1.42604i
\(652\) 0 0
\(653\) 20.5913i 0.805800i 0.915244 + 0.402900i \(0.131998\pi\)
−0.915244 + 0.402900i \(0.868002\pi\)
\(654\) 0 0
\(655\) −34.7041 −1.35600
\(656\) 0 0
\(657\) −18.4185 15.3860i −0.718575 0.600265i
\(658\) 0 0
\(659\) 41.7687 24.1152i 1.62708 0.939395i 0.642121 0.766604i \(-0.278055\pi\)
0.984959 0.172791i \(-0.0552785\pi\)
\(660\) 0 0
\(661\) −23.8342 + 13.7607i −0.927042 + 0.535228i −0.885875 0.463924i \(-0.846441\pi\)
−0.0411674 + 0.999152i \(0.513108\pi\)
\(662\) 0 0
\(663\) −19.6485 42.0156i −0.763086 1.63175i
\(664\) 0 0
\(665\) −20.5149 + 2.83720i −0.795535 + 0.110022i
\(666\) 0 0
\(667\) −20.2836 35.1323i −0.785385 1.36033i
\(668\) 0 0
\(669\) 12.0650 + 25.7993i 0.466460 + 0.997459i
\(670\) 0 0
\(671\) −4.80146 + 8.31637i −0.185358 + 0.321050i
\(672\) 0 0
\(673\) −17.5734 30.4380i −0.677404 1.17330i −0.975760 0.218844i \(-0.929771\pi\)
0.298355 0.954455i \(-0.403562\pi\)
\(674\) 0 0
\(675\) −0.0895707 + 0.338753i −0.00344758 + 0.0130386i
\(676\) 0 0
\(677\) −21.9428 + 38.0060i −0.843329 + 1.46069i 0.0437349 + 0.999043i \(0.486074\pi\)
−0.887064 + 0.461646i \(0.847259\pi\)
\(678\) 0 0
\(679\) −10.5684 + 1.46161i −0.405579 + 0.0560913i
\(680\) 0 0
\(681\) −2.38389 + 27.5979i −0.0913510 + 1.05755i
\(682\) 0 0
\(683\) −17.9331 10.3537i −0.686190 0.396172i 0.115993 0.993250i \(-0.462995\pi\)
−0.802183 + 0.597078i \(0.796328\pi\)
\(684\) 0 0
\(685\) 2.38896i 0.0912773i
\(686\) 0 0
\(687\) −26.6802 2.30462i −1.01791 0.0879267i
\(688\) 0 0
\(689\) −20.0482 34.7246i −0.763777 1.32290i
\(690\) 0 0
\(691\) 15.8678 + 9.16129i 0.603640 + 0.348512i 0.770472 0.637474i \(-0.220020\pi\)
−0.166832 + 0.985985i \(0.553354\pi\)
\(692\) 0 0
\(693\) −4.93359 + 7.89544i −0.187412 + 0.299923i
\(694\) 0 0
\(695\) 12.9209 + 7.45988i 0.490117 + 0.282969i
\(696\) 0 0
\(697\) −6.00582 10.4024i −0.227487 0.394018i
\(698\) 0 0
\(699\) 14.0020 + 29.9413i 0.529605 + 1.13248i
\(700\) 0 0
\(701\) 2.62840i 0.0992734i −0.998767 0.0496367i \(-0.984194\pi\)
0.998767 0.0496367i \(-0.0158064\pi\)
\(702\) 0 0
\(703\) −33.8410 19.5381i −1.27634 0.736894i
\(704\) 0 0
\(705\) −26.8981 18.7901i −1.01304 0.707677i
\(706\) 0 0
\(707\) 5.58340 + 2.27013i 0.209985 + 0.0853771i
\(708\) 0 0
\(709\) 8.16634 14.1445i 0.306693 0.531208i −0.670944 0.741508i \(-0.734111\pi\)
0.977637 + 0.210300i \(0.0674441\pi\)
\(710\) 0 0
\(711\) 8.69305 10.4064i 0.326015 0.390271i
\(712\) 0 0
\(713\) −23.1054 40.0198i −0.865305 1.49875i
\(714\) 0 0
\(715\) −4.69869 + 8.13838i −0.175721 + 0.304358i
\(716\) 0 0
\(717\) 8.44839 12.0939i 0.315511 0.451654i
\(718\) 0 0
\(719\) −3.15485 5.46436i −0.117656 0.203786i 0.801182 0.598420i \(-0.204205\pi\)
−0.918838 + 0.394634i \(0.870871\pi\)
\(720\) 0 0
\(721\) −8.84204 + 21.7470i −0.329295 + 0.809901i
\(722\) 0 0
\(723\) −39.0640 3.37432i −1.45280 0.125492i
\(724\) 0 0
\(725\) 0.407589 0.235322i 0.0151375 0.00873962i
\(726\) 0 0
\(727\) −14.3318 + 8.27447i −0.531537 + 0.306883i −0.741642 0.670796i \(-0.765953\pi\)
0.210105 + 0.977679i \(0.432619\pi\)
\(728\) 0 0
\(729\) −23.4713 13.3453i −0.869309 0.494269i
\(730\) 0 0
\(731\) 13.4263 0.496589
\(732\) 0 0
\(733\) 19.9109i 0.735425i −0.929939 0.367713i \(-0.880141\pi\)
0.929939 0.367713i \(-0.119859\pi\)
\(734\) 0 0
\(735\) 20.3805 17.5989i 0.751747 0.649145i
\(736\) 0 0
\(737\) 10.0837 5.82183i 0.371438 0.214450i
\(738\) 0 0
\(739\) 24.1545 41.8368i 0.888536 1.53899i 0.0469307 0.998898i \(-0.485056\pi\)
0.841606 0.540092i \(-0.181611\pi\)
\(740\) 0 0
\(741\) −1.89514 + 21.9397i −0.0696197 + 0.805975i
\(742\) 0 0
\(743\) 7.17819 + 4.14433i 0.263342 + 0.152041i 0.625858 0.779937i \(-0.284749\pi\)
−0.362516 + 0.931978i \(0.618082\pi\)
\(744\) 0 0
\(745\) 39.0075i 1.42912i
\(746\) 0 0
\(747\) −0.807168 2.20257i −0.0295327 0.0805880i
\(748\) 0 0
\(749\) 1.73938 0.240555i 0.0635555 0.00878968i
\(750\) 0 0
\(751\) 25.0229 0.913099 0.456549 0.889698i \(-0.349085\pi\)
0.456549 + 0.889698i \(0.349085\pi\)
\(752\) 0 0
\(753\) 1.15406 13.3604i 0.0420564 0.486879i
\(754\) 0 0
\(755\) 3.76683 0.137089
\(756\) 0 0
\(757\) −18.7744 −0.682368 −0.341184 0.939997i \(-0.610828\pi\)
−0.341184 + 0.939997i \(0.610828\pi\)
\(758\) 0 0
\(759\) −1.01625 + 11.7650i −0.0368876 + 0.427042i
\(760\) 0 0
\(761\) 23.1927 0.840733 0.420367 0.907354i \(-0.361901\pi\)
0.420367 + 0.907354i \(0.361901\pi\)
\(762\) 0 0
\(763\) −33.5588 + 26.1004i −1.21491 + 0.944897i
\(764\) 0 0
\(765\) −31.7099 + 37.9598i −1.14647 + 1.37244i
\(766\) 0 0
\(767\) 14.4393i 0.521372i
\(768\) 0 0
\(769\) 27.8202 + 16.0620i 1.00322 + 0.579210i 0.909200 0.416360i \(-0.136695\pi\)
0.0940211 + 0.995570i \(0.470028\pi\)
\(770\) 0 0
\(771\) 3.54595 41.0509i 0.127704 1.47841i
\(772\) 0 0
\(773\) −8.14023 + 14.0993i −0.292784 + 0.507116i −0.974467 0.224531i \(-0.927915\pi\)
0.681683 + 0.731647i \(0.261248\pi\)
\(774\) 0 0
\(775\) 0.464292 0.268059i 0.0166779 0.00962896i
\(776\) 0 0
\(777\) 50.7403 2.60332i 1.82030 0.0933938i
\(778\) 0 0
\(779\) 5.70281i 0.204324i
\(780\) 0 0
\(781\) 4.30705 0.154119
\(782\) 0 0
\(783\) 9.50192 + 34.9989i 0.339571 + 1.25076i
\(784\) 0 0
\(785\) −15.1608 + 8.75308i −0.541112 + 0.312411i
\(786\) 0 0
\(787\) 0.799139 0.461383i 0.0284862 0.0164465i −0.485689 0.874132i \(-0.661431\pi\)
0.514175 + 0.857685i \(0.328098\pi\)
\(788\) 0 0
\(789\) 35.4342 + 3.06079i 1.26149 + 0.108967i
\(790\) 0 0
\(791\) −9.12780 11.7362i −0.324547 0.417290i
\(792\) 0 0
\(793\) −14.7664 25.5761i −0.524369 0.908235i
\(794\) 0 0
\(795\) −24.4864 + 35.0523i −0.868443 + 1.24318i
\(796\) 0 0
\(797\) −2.98084 + 5.16296i −0.105587 + 0.182881i −0.913978 0.405764i \(-0.867005\pi\)
0.808391 + 0.588646i \(0.200339\pi\)
\(798\) 0 0
\(799\) 31.6597 + 54.8362i 1.12004 + 1.93997i
\(800\) 0 0
\(801\) −3.62200 9.88360i −0.127977 0.349220i
\(802\) 0 0
\(803\) 4.69174 8.12634i 0.165568 0.286772i
\(804\) 0 0
\(805\) 12.8640 31.6391i 0.453397 1.11513i
\(806\) 0 0
\(807\) 17.5270 + 12.2438i 0.616979 + 0.431002i
\(808\) 0 0
\(809\) −18.0267 10.4077i −0.633784 0.365916i 0.148432 0.988923i \(-0.452577\pi\)
−0.782216 + 0.623007i \(0.785911\pi\)
\(810\) 0 0
\(811\) 11.7101i 0.411198i 0.978636 + 0.205599i \(0.0659142\pi\)
−0.978636 + 0.205599i \(0.934086\pi\)
\(812\) 0 0
\(813\) 21.5112 + 45.9987i 0.754432 + 1.61324i
\(814\) 0 0
\(815\) −12.6457 21.9030i −0.442959 0.767228i
\(816\) 0 0
\(817\) −5.52043 3.18722i −0.193135 0.111507i
\(818\) 0 0
\(819\) −13.4421 25.2808i −0.469706 0.883382i
\(820\) 0 0
\(821\) 0.483490 + 0.279143i 0.0168739 + 0.00974215i 0.508413 0.861113i \(-0.330232\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(822\) 0 0
\(823\) 20.7043 + 35.8609i 0.721707 + 1.25003i 0.960315 + 0.278918i \(0.0899757\pi\)
−0.238607 + 0.971116i \(0.576691\pi\)
\(824\) 0 0
\(825\) −0.136492 0.0117901i −0.00475204 0.000410479i
\(826\) 0 0
\(827\) 8.83309i 0.307157i −0.988136 0.153578i \(-0.950920\pi\)
0.988136 0.153578i \(-0.0490797\pi\)
\(828\) 0 0
\(829\) −7.60753 4.39221i −0.264220 0.152548i 0.362038 0.932163i \(-0.382081\pi\)
−0.626258 + 0.779616i \(0.715414\pi\)
\(830\) 0 0
\(831\) 0.370008 4.28352i 0.0128355 0.148594i
\(832\) 0 0
\(833\) −50.0143 + 14.1037i −1.73289 + 0.488663i
\(834\) 0 0
\(835\) 17.8927 30.9911i 0.619204 1.07249i
\(836\) 0 0
\(837\) 10.8238 + 39.8679i 0.374126 + 1.37804i
\(838\) 0 0
\(839\) −11.6778 20.2265i −0.403161 0.698295i 0.590944 0.806712i \(-0.298755\pi\)
−0.994106 + 0.108417i \(0.965422\pi\)
\(840\) 0 0
\(841\) 9.85573 17.0706i 0.339853 0.588642i
\(842\) 0 0
\(843\) 17.0268 + 36.4095i 0.586435 + 1.25401i
\(844\) 0 0
\(845\) −0.0142428 0.0246693i −0.000489967 0.000848648i
\(846\) 0 0
\(847\) 23.5880 + 9.59054i 0.810492 + 0.329535i
\(848\) 0 0
\(849\) 20.0307 + 42.8327i 0.687450 + 1.47001i
\(850\) 0 0
\(851\) 55.8091 32.2214i 1.91311 1.10453i
\(852\) 0 0
\(853\) −13.8754 + 8.01099i −0.475086 + 0.274291i −0.718366 0.695665i \(-0.755110\pi\)
0.243280 + 0.969956i \(0.421777\pi\)
\(854\) 0 0
\(855\) 22.0492 8.08027i 0.754067 0.276340i
\(856\) 0 0
\(857\) −16.8241 −0.574700 −0.287350 0.957826i \(-0.592774\pi\)
−0.287350 + 0.957826i \(0.592774\pi\)
\(858\) 0 0
\(859\) 47.5953i 1.62393i −0.583705 0.811966i \(-0.698397\pi\)
0.583705 0.811966i \(-0.301603\pi\)
\(860\) 0 0
\(861\) −4.03156 6.22301i −0.137395 0.212080i
\(862\) 0 0
\(863\) 44.7300 25.8249i 1.52263 0.879089i 0.522985 0.852342i \(-0.324818\pi\)
0.999642 0.0267477i \(-0.00851508\pi\)
\(864\) 0 0
\(865\) −7.66628 + 13.2784i −0.260661 + 0.451478i
\(866\) 0 0
\(867\) 59.7919 27.9616i 2.03064 0.949625i
\(868\) 0 0
\(869\) 4.59136 + 2.65082i 0.155751 + 0.0899230i
\(870\) 0 0
\(871\) 35.8088i 1.21334i
\(872\) 0 0
\(873\) 11.3588 4.16262i 0.384438 0.140883i
\(874\) 0 0
\(875\) 27.5837 + 11.2151i 0.932499 + 0.379141i
\(876\) 0 0
\(877\) 14.3056 0.483066 0.241533 0.970393i \(-0.422350\pi\)
0.241533 + 0.970393i \(0.422350\pi\)
\(878\) 0 0
\(879\) 11.8030 + 8.24523i 0.398107 + 0.278105i
\(880\) 0 0
\(881\) −10.4054 −0.350566 −0.175283 0.984518i \(-0.556084\pi\)
−0.175283 + 0.984518i \(0.556084\pi\)
\(882\) 0 0
\(883\) −44.9042 −1.51115 −0.755574 0.655064i \(-0.772642\pi\)
−0.755574 + 0.655064i \(0.772642\pi\)
\(884\) 0 0
\(885\) 13.9479 6.52271i 0.468853 0.219259i
\(886\) 0 0
\(887\) −0.948519 −0.0318482 −0.0159241 0.999873i \(-0.505069\pi\)
−0.0159241 + 0.999873i \(0.505069\pi\)
\(888\) 0 0
\(889\) −18.9805 7.71720i −0.636585 0.258827i
\(890\) 0 0
\(891\) 3.56688 9.93584i 0.119495 0.332863i
\(892\) 0 0
\(893\) 30.0624i 1.00600i
\(894\) 0 0
\(895\) −11.7434 6.78006i −0.392539 0.226632i
\(896\) 0 0
\(897\) −29.7718 20.7976i −0.994052 0.694413i
\(898\) 0 0
\(899\) 27.7440 48.0541i 0.925316 1.60269i
\(900\) 0 0
\(901\) 71.4600 41.2574i 2.38068 1.37448i
\(902\) 0 0
\(903\) 8.27718 0.424676i 0.275447 0.0141323i
\(904\) 0 0
\(905\) 12.1336i 0.403335i
\(906\) 0 0
\(907\) −35.0550 −1.16398 −0.581990 0.813196i \(-0.697726\pi\)
−0.581990 + 0.813196i \(0.697726\pi\)
\(908\) 0 0
\(909\) −6.73303 1.17194i −0.223321 0.0388707i
\(910\) 0 0
\(911\) 42.8316 24.7288i 1.41907 0.819303i 0.422857 0.906196i \(-0.361027\pi\)
0.996218 + 0.0868934i \(0.0276940\pi\)
\(912\) 0 0
\(913\) 0.794307 0.458593i 0.0262877 0.0151772i
\(914\) 0 0
\(915\) −18.0353 + 25.8175i −0.596228 + 0.853500i
\(916\) 0 0
\(917\) 38.2976 + 15.5713i 1.26470 + 0.514209i
\(918\) 0 0
\(919\) −8.34526 14.4544i −0.275285 0.476807i 0.694922 0.719085i \(-0.255439\pi\)
−0.970207 + 0.242278i \(0.922105\pi\)
\(920\) 0 0
\(921\) 38.8107 + 3.35245i 1.27886 + 0.110467i
\(922\) 0 0
\(923\) −6.62295 + 11.4713i −0.217997 + 0.377582i
\(924\) 0 0
\(925\) 0.373818 + 0.647472i 0.0122911 + 0.0212888i
\(926\) 0 0
\(927\) 4.56463 26.2248i 0.149922 0.861335i
\(928\) 0 0
\(929\) −5.31860 + 9.21208i −0.174498 + 0.302239i −0.939987 0.341209i \(-0.889163\pi\)
0.765490 + 0.643448i \(0.222497\pi\)
\(930\) 0 0
\(931\) 23.9122 + 6.07381i 0.783692 + 0.199061i
\(932\) 0 0
\(933\) 15.1844 7.10097i 0.497116 0.232475i
\(934\) 0 0
\(935\) −16.7480 9.66948i −0.547719 0.316226i
\(936\) 0 0
\(937\) 26.7085i 0.872528i 0.899819 + 0.436264i \(0.143699\pi\)
−0.899819 + 0.436264i \(0.856301\pi\)
\(938\) 0 0
\(939\) −24.2985 + 34.7833i −0.792952 + 1.13511i
\(940\) 0 0
\(941\) 3.29534 + 5.70769i 0.107425 + 0.186065i 0.914726 0.404074i \(-0.132406\pi\)
−0.807301 + 0.590139i \(0.799073\pi\)
\(942\) 0 0
\(943\) −8.14481 4.70241i −0.265232 0.153131i
\(944\) 0 0
\(945\) −18.3482 + 24.4049i −0.596867 + 0.793891i
\(946\) 0 0
\(947\) −24.8907 14.3706i −0.808838 0.466983i 0.0377144 0.999289i \(-0.487992\pi\)
−0.846552 + 0.532306i \(0.821326\pi\)
\(948\) 0 0
\(949\) 14.4290 + 24.9917i 0.468384 + 0.811265i
\(950\) 0 0
\(951\) −9.11179 + 13.0435i −0.295470 + 0.422965i
\(952\) 0 0
\(953\) 18.2616i 0.591550i −0.955258 0.295775i \(-0.904422\pi\)
0.955258 0.295775i \(-0.0955778\pi\)
\(954\) 0 0
\(955\) 11.5718 + 6.68098i 0.374455 + 0.216191i
\(956\) 0 0
\(957\) −12.8444 + 6.00666i −0.415200 + 0.194168i
\(958\) 0 0
\(959\) 1.07189 2.63633i 0.0346133 0.0851315i
\(960\) 0 0
\(961\) 16.1037 27.8925i 0.519476 0.899758i
\(962\) 0 0
\(963\) −1.86946 + 0.685094i −0.0602426 + 0.0220769i
\(964\) 0 0
\(965\) −6.41889 11.1178i −0.206631 0.357896i
\(966\) 0 0
\(967\) −12.5899 + 21.8064i −0.404865 + 0.701247i −0.994306 0.106565i \(-0.966015\pi\)
0.589441 + 0.807812i \(0.299348\pi\)
\(968\) 0 0
\(969\) −45.1499 3.90003i −1.45042 0.125287i
\(970\) 0 0
\(971\) 23.7214 + 41.0866i 0.761255 + 1.31853i 0.942204 + 0.335040i \(0.108750\pi\)
−0.180949 + 0.983492i \(0.557917\pi\)
\(972\) 0 0
\(973\) −10.9117 14.0298i −0.349812 0.449774i
\(974\) 0 0
\(975\) 0.241285 0.345399i 0.00772730 0.0110616i
\(976\) 0 0
\(977\) 47.9278 27.6711i 1.53334 0.885277i 0.534141 0.845396i \(-0.320635\pi\)
0.999204 0.0398814i \(-0.0126980\pi\)
\(978\) 0 0
\(979\) 3.56429 2.05784i 0.113915 0.0657690i
\(980\) 0 0
\(981\) 30.9049 36.9961i 0.986717 1.18120i
\(982\) 0 0
\(983\) 25.3499 0.808537 0.404268 0.914640i \(-0.367526\pi\)
0.404268 + 0.914640i \(0.367526\pi\)
\(984\) 0 0
\(985\) 17.6643i 0.562832i
\(986\) 0 0
\(987\) 21.2524 + 32.8046i 0.676472 + 1.04418i
\(988\) 0 0
\(989\) 9.10404 5.25622i 0.289492 0.167138i
\(990\) 0 0
\(991\) 12.9683 22.4618i 0.411953 0.713523i −0.583151 0.812364i \(-0.698180\pi\)
0.995103 + 0.0988413i \(0.0315136\pi\)
\(992\) 0 0
\(993\) 36.5196 + 25.5114i 1.15891 + 0.809580i
\(994\) 0 0
\(995\) −34.4753 19.9043i −1.09294 0.631010i
\(996\) 0 0
\(997\) 15.9283i 0.504453i −0.967668 0.252227i \(-0.918837\pi\)
0.967668 0.252227i \(-0.0811629\pi\)
\(998\) 0 0
\(999\) −55.5972 + 15.0942i −1.75902 + 0.477559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.689.12 48
3.2 odd 2 3024.2.df.e.17.20 48
4.3 odd 2 504.2.cx.a.185.13 yes 48
7.5 odd 6 1008.2.ca.e.257.20 48
9.2 odd 6 1008.2.ca.e.353.20 48
9.7 even 3 3024.2.ca.e.2033.20 48
12.11 even 2 1512.2.cx.a.17.20 48
21.5 even 6 3024.2.ca.e.2609.20 48
28.19 even 6 504.2.bs.a.257.5 48
36.7 odd 6 1512.2.bs.a.521.20 48
36.11 even 6 504.2.bs.a.353.5 yes 48
63.47 even 6 inner 1008.2.df.e.929.12 48
63.61 odd 6 3024.2.df.e.1601.20 48
84.47 odd 6 1512.2.bs.a.1097.20 48
252.47 odd 6 504.2.cx.a.425.13 yes 48
252.187 even 6 1512.2.cx.a.89.20 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.5 48 28.19 even 6
504.2.bs.a.353.5 yes 48 36.11 even 6
504.2.cx.a.185.13 yes 48 4.3 odd 2
504.2.cx.a.425.13 yes 48 252.47 odd 6
1008.2.ca.e.257.20 48 7.5 odd 6
1008.2.ca.e.353.20 48 9.2 odd 6
1008.2.df.e.689.12 48 1.1 even 1 trivial
1008.2.df.e.929.12 48 63.47 even 6 inner
1512.2.bs.a.521.20 48 36.7 odd 6
1512.2.bs.a.1097.20 48 84.47 odd 6
1512.2.cx.a.17.20 48 12.11 even 2
1512.2.cx.a.89.20 48 252.187 even 6
3024.2.ca.e.2033.20 48 9.7 even 3
3024.2.ca.e.2609.20 48 21.5 even 6
3024.2.df.e.17.20 48 3.2 odd 2
3024.2.df.e.1601.20 48 63.61 odd 6