Properties

Label 1512.2.cx.a.17.20
Level $1512$
Weight $2$
Character 1512.17
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.20
Character \(\chi\) \(=\) 1512.17
Dual form 1512.2.cx.a.89.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.22094 q^{5} +(-2.45091 - 0.996507i) q^{7} -1.17296i q^{11} +(3.12404 + 1.80366i) q^{13} +(3.71178 - 6.42899i) q^{17} +(-3.05231 + 1.76225i) q^{19} +5.81246i q^{23} -0.0674336 q^{25} +(6.04430 - 3.48968i) q^{29} +(6.88517 - 3.97516i) q^{31} +(-5.44333 - 2.21318i) q^{35} +(-5.54350 - 9.60163i) q^{37} +(0.809022 - 1.40127i) q^{41} +(0.904302 + 1.56630i) q^{43} +(4.26476 - 7.38679i) q^{47} +(5.01395 + 4.88471i) q^{49} +(9.62611 + 5.55764i) q^{53} -2.60508i q^{55} +(2.00138 + 3.46649i) q^{59} +(-7.09004 - 4.09344i) q^{61} +(6.93830 + 4.00583i) q^{65} +(-4.96334 - 8.59676i) q^{67} +3.67194i q^{71} +(6.92803 + 3.99990i) q^{73} +(-1.16887 + 2.87483i) q^{77} +(2.25993 - 3.91432i) q^{79} +(0.390969 + 0.677179i) q^{83} +(8.24363 - 14.2784i) q^{85} +(-1.75440 - 3.03870i) q^{89} +(-5.85938 - 7.53375i) q^{91} +(-6.77900 + 3.91386i) q^{95} +(-3.49226 + 2.01626i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.22094 0.993234 0.496617 0.867970i \(-0.334575\pi\)
0.496617 + 0.867970i \(0.334575\pi\)
\(6\) 0 0
\(7\) −2.45091 0.996507i −0.926358 0.376644i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.17296i 0.353662i −0.984241 0.176831i \(-0.943415\pi\)
0.984241 0.176831i \(-0.0565846\pi\)
\(12\) 0 0
\(13\) 3.12404 + 1.80366i 0.866453 + 0.500247i 0.866168 0.499753i \(-0.166576\pi\)
0.000284763 1.00000i \(0.499909\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.71178 6.42899i 0.900238 1.55926i 0.0730533 0.997328i \(-0.476726\pi\)
0.827185 0.561930i \(-0.189941\pi\)
\(18\) 0 0
\(19\) −3.05231 + 1.76225i −0.700249 + 0.404289i −0.807440 0.589950i \(-0.799148\pi\)
0.107191 + 0.994238i \(0.465814\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.81246i 1.21198i 0.795472 + 0.605991i \(0.207223\pi\)
−0.795472 + 0.605991i \(0.792777\pi\)
\(24\) 0 0
\(25\) −0.0674336 −0.0134867
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.04430 3.48968i 1.12240 0.648017i 0.180387 0.983596i \(-0.442265\pi\)
0.942012 + 0.335579i \(0.108932\pi\)
\(30\) 0 0
\(31\) 6.88517 3.97516i 1.23661 0.713959i 0.268213 0.963360i \(-0.413567\pi\)
0.968400 + 0.249400i \(0.0802335\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.44333 2.21318i −0.920090 0.374096i
\(36\) 0 0
\(37\) −5.54350 9.60163i −0.911346 1.57850i −0.812164 0.583429i \(-0.801711\pi\)
−0.0991818 0.995069i \(-0.531623\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.809022 1.40127i 0.126348 0.218841i −0.795911 0.605414i \(-0.793008\pi\)
0.922259 + 0.386572i \(0.126341\pi\)
\(42\) 0 0
\(43\) 0.904302 + 1.56630i 0.137905 + 0.238858i 0.926703 0.375794i \(-0.122630\pi\)
−0.788799 + 0.614652i \(0.789297\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.26476 7.38679i 0.622080 1.07747i −0.367018 0.930214i \(-0.619621\pi\)
0.989098 0.147260i \(-0.0470454\pi\)
\(48\) 0 0
\(49\) 5.01395 + 4.88471i 0.716278 + 0.697815i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.62611 + 5.55764i 1.32225 + 0.763400i 0.984087 0.177688i \(-0.0568617\pi\)
0.338161 + 0.941088i \(0.390195\pi\)
\(54\) 0 0
\(55\) 2.60508i 0.351269i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00138 + 3.46649i 0.260557 + 0.451298i 0.966390 0.257080i \(-0.0827604\pi\)
−0.705833 + 0.708378i \(0.749427\pi\)
\(60\) 0 0
\(61\) −7.09004 4.09344i −0.907787 0.524111i −0.0280684 0.999606i \(-0.508936\pi\)
−0.879718 + 0.475495i \(0.842269\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.93830 + 4.00583i 0.860590 + 0.496862i
\(66\) 0 0
\(67\) −4.96334 8.59676i −0.606369 1.05026i −0.991834 0.127539i \(-0.959292\pi\)
0.385465 0.922723i \(-0.374041\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.67194i 0.435779i 0.975973 + 0.217890i \(0.0699172\pi\)
−0.975973 + 0.217890i \(0.930083\pi\)
\(72\) 0 0
\(73\) 6.92803 + 3.99990i 0.810865 + 0.468153i 0.847256 0.531185i \(-0.178253\pi\)
−0.0363913 + 0.999338i \(0.511586\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.16887 + 2.87483i −0.133205 + 0.327618i
\(78\) 0 0
\(79\) 2.25993 3.91432i 0.254262 0.440395i −0.710433 0.703765i \(-0.751501\pi\)
0.964695 + 0.263370i \(0.0848340\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.390969 + 0.677179i 0.0429145 + 0.0743300i 0.886685 0.462374i \(-0.153002\pi\)
−0.843770 + 0.536704i \(0.819669\pi\)
\(84\) 0 0
\(85\) 8.24363 14.2784i 0.894147 1.54871i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.75440 3.03870i −0.185966 0.322102i 0.757936 0.652329i \(-0.226208\pi\)
−0.943901 + 0.330227i \(0.892875\pi\)
\(90\) 0 0
\(91\) −5.85938 7.53375i −0.614230 0.789752i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.77900 + 3.91386i −0.695511 + 0.401553i
\(96\) 0 0
\(97\) −3.49226 + 2.01626i −0.354585 + 0.204720i −0.666703 0.745324i \(-0.732295\pi\)
0.312118 + 0.950043i \(0.398962\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.27809 −0.226678 −0.113339 0.993556i \(-0.536155\pi\)
−0.113339 + 0.993556i \(0.536155\pi\)
\(102\) 0 0
\(103\) 8.87303i 0.874285i −0.899392 0.437143i \(-0.855990\pi\)
0.899392 0.437143i \(-0.144010\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.574764 0.331840i 0.0555646 0.0320802i −0.471960 0.881620i \(-0.656453\pi\)
0.527525 + 0.849540i \(0.323120\pi\)
\(108\) 0 0
\(109\) −8.03435 + 13.9159i −0.769551 + 1.33290i 0.168256 + 0.985743i \(0.446187\pi\)
−0.937807 + 0.347158i \(0.887147\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.86666 + 2.80977i 0.457817 + 0.264321i 0.711126 0.703065i \(-0.248186\pi\)
−0.253309 + 0.967385i \(0.581519\pi\)
\(114\) 0 0
\(115\) 12.9091i 1.20378i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.5038 + 12.0581i −1.42123 + 1.10536i
\(120\) 0 0
\(121\) 9.62415 0.874923
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.2545 −1.00663
\(126\) 0 0
\(127\) 7.74425 0.687191 0.343595 0.939118i \(-0.388355\pi\)
0.343595 + 0.939118i \(0.388355\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.6259 1.36524 0.682619 0.730774i \(-0.260841\pi\)
0.682619 + 0.730774i \(0.260841\pi\)
\(132\) 0 0
\(133\) 9.23705 1.27748i 0.800954 0.110771i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.07565i 0.0918991i 0.998944 + 0.0459496i \(0.0146313\pi\)
−0.998944 + 0.0459496i \(0.985369\pi\)
\(138\) 0 0
\(139\) 5.81776 + 3.35889i 0.493456 + 0.284897i 0.726007 0.687687i \(-0.241374\pi\)
−0.232551 + 0.972584i \(0.574707\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.11563 3.66439i 0.176918 0.306431i
\(144\) 0 0
\(145\) 13.4240 7.75036i 1.11480 0.643633i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.5635i 1.43886i −0.694565 0.719430i \(-0.744403\pi\)
0.694565 0.719430i \(-0.255597\pi\)
\(150\) 0 0
\(151\) 1.69606 0.138023 0.0690115 0.997616i \(-0.478015\pi\)
0.0690115 + 0.997616i \(0.478015\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.2915 8.82858i 1.22825 0.709128i
\(156\) 0 0
\(157\) 6.82630 3.94116i 0.544798 0.314539i −0.202223 0.979339i \(-0.564817\pi\)
0.747021 + 0.664800i \(0.231483\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.79216 14.2458i 0.456486 1.12273i
\(162\) 0 0
\(163\) −5.69385 9.86204i −0.445977 0.772455i 0.552143 0.833750i \(-0.313810\pi\)
−0.998120 + 0.0612949i \(0.980477\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.05638 + 13.9541i −0.623422 + 1.07980i 0.365422 + 0.930842i \(0.380925\pi\)
−0.988844 + 0.148956i \(0.952409\pi\)
\(168\) 0 0
\(169\) 0.00641296 + 0.0111076i 0.000493305 + 0.000854429i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.45182 + 5.97872i −0.262437 + 0.454554i −0.966889 0.255198i \(-0.917859\pi\)
0.704452 + 0.709752i \(0.251193\pi\)
\(174\) 0 0
\(175\) 0.165274 + 0.0671981i 0.0124935 + 0.00507970i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.28759 + 3.05279i 0.395213 + 0.228176i 0.684416 0.729091i \(-0.260057\pi\)
−0.289203 + 0.957268i \(0.593390\pi\)
\(180\) 0 0
\(181\) 5.46329i 0.406083i 0.979170 + 0.203041i \(0.0650826\pi\)
−0.979170 + 0.203041i \(0.934917\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.3118 21.3246i −0.905180 1.56782i
\(186\) 0 0
\(187\) −7.54097 4.35378i −0.551451 0.318380i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.21032 3.00818i −0.377005 0.217664i 0.299509 0.954093i \(-0.403177\pi\)
−0.676515 + 0.736429i \(0.736510\pi\)
\(192\) 0 0
\(193\) 2.89017 + 5.00592i 0.208039 + 0.360334i 0.951097 0.308893i \(-0.0999586\pi\)
−0.743058 + 0.669227i \(0.766625\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.95354i 0.566666i 0.959022 + 0.283333i \(0.0914402\pi\)
−0.959022 + 0.283333i \(0.908560\pi\)
\(198\) 0 0
\(199\) −15.5229 8.96214i −1.10039 0.635309i −0.164065 0.986450i \(-0.552461\pi\)
−0.936323 + 0.351141i \(0.885794\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −18.2915 + 2.52971i −1.28382 + 0.177551i
\(204\) 0 0
\(205\) 1.79679 3.11213i 0.125493 0.217360i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.06706 + 3.58026i 0.142982 + 0.247651i
\(210\) 0 0
\(211\) −4.00200 + 6.93166i −0.275509 + 0.477195i −0.970263 0.242052i \(-0.922180\pi\)
0.694755 + 0.719247i \(0.255513\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.00840 + 3.47865i 0.136972 + 0.237242i
\(216\) 0 0
\(217\) −20.8362 + 2.88164i −1.41446 + 0.195618i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 23.1915 13.3896i 1.56003 0.900682i
\(222\) 0 0
\(223\) −14.2405 + 8.22177i −0.953616 + 0.550570i −0.894202 0.447663i \(-0.852256\pi\)
−0.0594134 + 0.998233i \(0.518923\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.9930 1.06149 0.530746 0.847531i \(-0.321912\pi\)
0.530746 + 0.847531i \(0.321912\pi\)
\(228\) 0 0
\(229\) 15.4612i 1.02170i 0.859669 + 0.510851i \(0.170670\pi\)
−0.859669 + 0.510851i \(0.829330\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.5268 + 9.54175i −1.08271 + 0.625101i −0.931625 0.363421i \(-0.881609\pi\)
−0.151081 + 0.988521i \(0.548275\pi\)
\(234\) 0 0
\(235\) 9.47178 16.4056i 0.617871 1.07018i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.37626 4.25868i −0.477130 0.275471i 0.242089 0.970254i \(-0.422167\pi\)
−0.719220 + 0.694783i \(0.755501\pi\)
\(240\) 0 0
\(241\) 22.6376i 1.45821i 0.684400 + 0.729107i \(0.260064\pi\)
−0.684400 + 0.729107i \(0.739936\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.1357 + 10.8486i 0.711431 + 0.693093i
\(246\) 0 0
\(247\) −12.7141 −0.808976
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.74235 −0.488693 −0.244346 0.969688i \(-0.578573\pi\)
−0.244346 + 0.969688i \(0.578573\pi\)
\(252\) 0 0
\(253\) 6.81781 0.428632
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.7890 1.48392 0.741958 0.670447i \(-0.233897\pi\)
0.741958 + 0.670447i \(0.233897\pi\)
\(258\) 0 0
\(259\) 4.01855 + 29.0569i 0.249700 + 1.80551i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.5341i 1.26619i −0.774075 0.633094i \(-0.781785\pi\)
0.774075 0.633094i \(-0.218215\pi\)
\(264\) 0 0
\(265\) 21.3790 + 12.3432i 1.31330 + 0.758235i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.17188 + 10.6900i −0.376306 + 0.651782i −0.990522 0.137357i \(-0.956139\pi\)
0.614215 + 0.789138i \(0.289473\pi\)
\(270\) 0 0
\(271\) −25.3900 + 14.6589i −1.54233 + 0.890467i −0.543643 + 0.839317i \(0.682955\pi\)
−0.998691 + 0.0511505i \(0.983711\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.0790972i 0.00476974i
\(276\) 0 0
\(277\) −2.48230 −0.149147 −0.0745735 0.997216i \(-0.523760\pi\)
−0.0745735 + 0.997216i \(0.523760\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −20.0970 + 11.6030i −1.19889 + 0.692178i −0.960307 0.278944i \(-0.910015\pi\)
−0.238581 + 0.971123i \(0.576682\pi\)
\(282\) 0 0
\(283\) −23.6425 + 13.6500i −1.40540 + 0.811408i −0.994940 0.100471i \(-0.967965\pi\)
−0.410460 + 0.911879i \(0.634632\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.37922 + 2.62819i −0.199469 + 0.155137i
\(288\) 0 0
\(289\) −19.0546 33.0035i −1.12086 1.94138i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.15628 + 7.19888i −0.242812 + 0.420563i −0.961514 0.274755i \(-0.911403\pi\)
0.718702 + 0.695318i \(0.244737\pi\)
\(294\) 0 0
\(295\) 4.44494 + 7.69886i 0.258794 + 0.448245i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.4837 + 18.1584i −0.606290 + 1.05012i
\(300\) 0 0
\(301\) −0.655539 4.74000i −0.0377846 0.273209i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.7465 9.09127i −0.901645 0.520565i
\(306\) 0 0
\(307\) 22.4908i 1.28362i 0.766864 + 0.641810i \(0.221816\pi\)
−0.766864 + 0.641810i \(0.778184\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.83900 8.38139i −0.274394 0.475265i 0.695588 0.718441i \(-0.255144\pi\)
−0.969982 + 0.243176i \(0.921811\pi\)
\(312\) 0 0
\(313\) 21.2150 + 12.2485i 1.19914 + 0.692324i 0.960363 0.278751i \(-0.0899204\pi\)
0.238776 + 0.971075i \(0.423254\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.95548 4.59310i −0.446824 0.257974i 0.259664 0.965699i \(-0.416388\pi\)
−0.706488 + 0.707725i \(0.749722\pi\)
\(318\) 0 0
\(319\) −4.09327 7.08975i −0.229179 0.396950i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.1644i 1.45582i
\(324\) 0 0
\(325\) −0.210665 0.121628i −0.0116856 0.00674668i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.8136 + 13.8545i −0.982093 + 0.763823i
\(330\) 0 0
\(331\) −12.8599 + 22.2739i −0.706842 + 1.22429i 0.259181 + 0.965829i \(0.416547\pi\)
−0.966023 + 0.258457i \(0.916786\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0233 19.0929i −0.602266 1.04316i
\(336\) 0 0
\(337\) 8.80657 15.2534i 0.479724 0.830907i −0.520005 0.854163i \(-0.674070\pi\)
0.999730 + 0.0232560i \(0.00740329\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.66272 8.07606i −0.252500 0.437343i
\(342\) 0 0
\(343\) −7.42110 16.9684i −0.400702 0.916209i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.23389 + 4.17649i −0.388335 + 0.224206i −0.681439 0.731875i \(-0.738645\pi\)
0.293103 + 0.956081i \(0.405312\pi\)
\(348\) 0 0
\(349\) −16.4062 + 9.47211i −0.878203 + 0.507031i −0.870065 0.492936i \(-0.835924\pi\)
−0.00813729 + 0.999967i \(0.502590\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.4971 −1.35707 −0.678537 0.734566i \(-0.737386\pi\)
−0.678537 + 0.734566i \(0.737386\pi\)
\(354\) 0 0
\(355\) 8.15515i 0.432830i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.4128 10.0533i 0.919013 0.530592i 0.0356928 0.999363i \(-0.488636\pi\)
0.883320 + 0.468771i \(0.155303\pi\)
\(360\) 0 0
\(361\) −3.28892 + 5.69658i −0.173101 + 0.299820i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.3867 + 8.88353i 0.805378 + 0.464985i
\(366\) 0 0
\(367\) 23.2850i 1.21547i −0.794140 0.607735i \(-0.792078\pi\)
0.794140 0.607735i \(-0.207922\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.0545 23.2138i −0.937345 1.20520i
\(372\) 0 0
\(373\) −25.1249 −1.30092 −0.650460 0.759540i \(-0.725424\pi\)
−0.650460 + 0.759540i \(0.725424\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.1768 1.29667
\(378\) 0 0
\(379\) 32.3000 1.65914 0.829569 0.558404i \(-0.188586\pi\)
0.829569 + 0.558404i \(0.188586\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.54363 −0.487657 −0.243828 0.969818i \(-0.578403\pi\)
−0.243828 + 0.969818i \(0.578403\pi\)
\(384\) 0 0
\(385\) −2.59598 + 6.38483i −0.132304 + 0.325401i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.6201i 0.690566i 0.938499 + 0.345283i \(0.112217\pi\)
−0.938499 + 0.345283i \(0.887783\pi\)
\(390\) 0 0
\(391\) 37.3682 + 21.5746i 1.88979 + 1.09107i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.01917 8.69346i 0.252542 0.437415i
\(396\) 0 0
\(397\) 2.59589 1.49874i 0.130284 0.0752196i −0.433441 0.901182i \(-0.642701\pi\)
0.563726 + 0.825962i \(0.309368\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.0336i 0.650869i −0.945565 0.325434i \(-0.894489\pi\)
0.945565 0.325434i \(-0.105511\pi\)
\(402\) 0 0
\(403\) 28.6794 1.42862
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.2624 + 6.50233i −0.558255 + 0.322309i
\(408\) 0 0
\(409\) −28.4682 + 16.4361i −1.40766 + 0.812714i −0.995162 0.0982431i \(-0.968678\pi\)
−0.412500 + 0.910958i \(0.635344\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.45082 10.4905i −0.0713903 0.516201i
\(414\) 0 0
\(415\) 0.868319 + 1.50397i 0.0426241 + 0.0738271i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.0687 + 19.1716i −0.540742 + 0.936593i 0.458119 + 0.888891i \(0.348523\pi\)
−0.998862 + 0.0477024i \(0.984810\pi\)
\(420\) 0 0
\(421\) 12.1963 + 21.1245i 0.594409 + 1.02955i 0.993630 + 0.112692i \(0.0359472\pi\)
−0.399221 + 0.916855i \(0.630719\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.250298 + 0.433529i −0.0121413 + 0.0210293i
\(426\) 0 0
\(427\) 13.2979 + 17.0979i 0.643532 + 0.827427i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.2611 + 7.07897i 0.590598 + 0.340982i 0.765334 0.643634i \(-0.222574\pi\)
−0.174736 + 0.984615i \(0.555907\pi\)
\(432\) 0 0
\(433\) 8.90220i 0.427813i −0.976854 0.213906i \(-0.931381\pi\)
0.976854 0.213906i \(-0.0686187\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2430 17.7415i −0.489991 0.848689i
\(438\) 0 0
\(439\) −13.9971 8.08120i −0.668043 0.385695i 0.127292 0.991865i \(-0.459372\pi\)
−0.795335 + 0.606171i \(0.792705\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.1101 + 8.72383i 0.717903 + 0.414482i 0.813980 0.580892i \(-0.197296\pi\)
−0.0960772 + 0.995374i \(0.530630\pi\)
\(444\) 0 0
\(445\) −3.89640 6.74877i −0.184707 0.319922i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.14988i 0.431809i −0.976414 0.215905i \(-0.930730\pi\)
0.976414 0.215905i \(-0.0692700\pi\)
\(450\) 0 0
\(451\) −1.64364 0.948954i −0.0773958 0.0446845i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −13.0133 16.7320i −0.610074 0.784408i
\(456\) 0 0
\(457\) −7.05757 + 12.2241i −0.330139 + 0.571818i −0.982539 0.186057i \(-0.940429\pi\)
0.652400 + 0.757875i \(0.273762\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.5323 + 30.3668i 0.816561 + 1.41432i 0.908202 + 0.418532i \(0.137455\pi\)
−0.0916412 + 0.995792i \(0.529211\pi\)
\(462\) 0 0
\(463\) 15.9985 27.7103i 0.743515 1.28781i −0.207370 0.978263i \(-0.566490\pi\)
0.950885 0.309543i \(-0.100176\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.02671 + 13.9027i 0.371432 + 0.643339i 0.989786 0.142561i \(-0.0455337\pi\)
−0.618354 + 0.785899i \(0.712200\pi\)
\(468\) 0 0
\(469\) 3.59798 + 26.0159i 0.166139 + 1.20130i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.83721 1.06071i 0.0844751 0.0487717i
\(474\) 0 0
\(475\) 0.205828 0.118835i 0.00944406 0.00545253i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −31.4961 −1.43909 −0.719547 0.694443i \(-0.755651\pi\)
−0.719547 + 0.694443i \(0.755651\pi\)
\(480\) 0 0
\(481\) 39.9945i 1.82359i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.75609 + 4.47798i −0.352186 + 0.203335i
\(486\) 0 0
\(487\) 10.7924 18.6930i 0.489052 0.847062i −0.510869 0.859659i \(-0.670676\pi\)
0.999921 + 0.0125963i \(0.00400964\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.9290 + 16.7022i 1.30555 + 0.753758i 0.981349 0.192232i \(-0.0615726\pi\)
0.324197 + 0.945990i \(0.394906\pi\)
\(492\) 0 0
\(493\) 51.8116i 2.33348i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.65911 8.99960i 0.164134 0.403687i
\(498\) 0 0
\(499\) 32.1443 1.43898 0.719489 0.694504i \(-0.244376\pi\)
0.719489 + 0.694504i \(0.244376\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.7295 0.968872 0.484436 0.874827i \(-0.339025\pi\)
0.484436 + 0.874827i \(0.339025\pi\)
\(504\) 0 0
\(505\) −5.05949 −0.225145
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −23.8864 −1.05875 −0.529373 0.848389i \(-0.677573\pi\)
−0.529373 + 0.848389i \(0.677573\pi\)
\(510\) 0 0
\(511\) −12.9941 16.7072i −0.574824 0.739085i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.7064i 0.868370i
\(516\) 0 0
\(517\) −8.66444 5.00242i −0.381062 0.220006i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.5098 + 23.3996i −0.591874 + 1.02516i 0.402106 + 0.915593i \(0.368278\pi\)
−0.993980 + 0.109562i \(0.965055\pi\)
\(522\) 0 0
\(523\) 27.2136 15.7118i 1.18997 0.687028i 0.231669 0.972795i \(-0.425582\pi\)
0.958299 + 0.285766i \(0.0922482\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 59.0196i 2.57093i
\(528\) 0 0
\(529\) −10.7847 −0.468899
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.05483 2.91841i 0.218949 0.126410i
\(534\) 0 0
\(535\) 1.27652 0.736997i 0.0551886 0.0318632i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.72959 5.88118i 0.246791 0.253320i
\(540\) 0 0
\(541\) −0.0969057 0.167846i −0.00416630 0.00721624i 0.863935 0.503604i \(-0.167993\pi\)
−0.868101 + 0.496388i \(0.834660\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17.8438 + 30.9064i −0.764344 + 1.32388i
\(546\) 0 0
\(547\) 0.987053 + 1.70963i 0.0422033 + 0.0730983i 0.886355 0.463005i \(-0.153229\pi\)
−0.844152 + 0.536104i \(0.819896\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.2994 + 21.3032i −0.523972 + 0.907547i
\(552\) 0 0
\(553\) −9.43955 + 7.34161i −0.401410 + 0.312197i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.3383 + 10.5876i 0.777018 + 0.448612i 0.835373 0.549684i \(-0.185252\pi\)
−0.0583543 + 0.998296i \(0.518585\pi\)
\(558\) 0 0
\(559\) 6.52423i 0.275946i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.0645 + 29.5565i 0.719182 + 1.24566i 0.961324 + 0.275419i \(0.0888165\pi\)
−0.242142 + 0.970241i \(0.577850\pi\)
\(564\) 0 0
\(565\) 10.8085 + 6.24032i 0.454719 + 0.262532i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.55993 5.51943i −0.400773 0.231387i 0.286044 0.958216i \(-0.407660\pi\)
−0.686818 + 0.726830i \(0.740993\pi\)
\(570\) 0 0
\(571\) −20.6616 35.7870i −0.864663 1.49764i −0.867382 0.497644i \(-0.834199\pi\)
0.00271871 0.999996i \(-0.499135\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.391955i 0.0163456i
\(576\) 0 0
\(577\) 12.5253 + 7.23151i 0.521437 + 0.301052i 0.737522 0.675323i \(-0.235996\pi\)
−0.216085 + 0.976374i \(0.569329\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.283418 2.04931i −0.0117582 0.0850197i
\(582\) 0 0
\(583\) 6.51891 11.2911i 0.269986 0.467629i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.248251 + 0.429983i 0.0102464 + 0.0177473i 0.871103 0.491100i \(-0.163405\pi\)
−0.860857 + 0.508847i \(0.830072\pi\)
\(588\) 0 0
\(589\) −14.0105 + 24.2669i −0.577292 + 0.999898i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.2302 21.1834i −0.502236 0.869898i −0.999997 0.00258345i \(-0.999178\pi\)
0.497761 0.867314i \(-0.334156\pi\)
\(594\) 0 0
\(595\) −34.4329 + 26.7802i −1.41161 + 1.09788i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.3114 + 9.41741i −0.666467 + 0.384785i −0.794737 0.606954i \(-0.792391\pi\)
0.128270 + 0.991739i \(0.459058\pi\)
\(600\) 0 0
\(601\) −6.37572 + 3.68102i −0.260071 + 0.150152i −0.624367 0.781131i \(-0.714643\pi\)
0.364296 + 0.931283i \(0.381310\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 21.3747 0.869003
\(606\) 0 0
\(607\) 28.9923i 1.17676i 0.808584 + 0.588380i \(0.200234\pi\)
−0.808584 + 0.588380i \(0.799766\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.6466 15.3844i 1.07801 0.622387i
\(612\) 0 0
\(613\) 12.4334 21.5352i 0.502179 0.869799i −0.497818 0.867282i \(-0.665865\pi\)
0.999997 0.00251771i \(-0.000801413\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 37.4629 + 21.6292i 1.50820 + 0.870759i 0.999954 + 0.00954684i \(0.00303890\pi\)
0.508245 + 0.861213i \(0.330294\pi\)
\(618\) 0 0
\(619\) 7.45221i 0.299529i −0.988722 0.149765i \(-0.952148\pi\)
0.988722 0.149765i \(-0.0478516\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.27178 + 9.19586i 0.0509528 + 0.368424i
\(624\) 0 0
\(625\) −24.6583 −0.986331
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −82.3050 −3.28171
\(630\) 0 0
\(631\) −9.67068 −0.384984 −0.192492 0.981299i \(-0.561657\pi\)
−0.192492 + 0.981299i \(0.561657\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.1995 0.682541
\(636\) 0 0
\(637\) 6.85339 + 24.3035i 0.271541 + 0.962939i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.9590i 1.22281i −0.791318 0.611404i \(-0.790605\pi\)
0.791318 0.611404i \(-0.209395\pi\)
\(642\) 0 0
\(643\) 6.99262 + 4.03719i 0.275762 + 0.159211i 0.631503 0.775373i \(-0.282438\pi\)
−0.355741 + 0.934585i \(0.615772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.54355 + 7.86966i −0.178625 + 0.309388i −0.941410 0.337265i \(-0.890498\pi\)
0.762785 + 0.646653i \(0.223832\pi\)
\(648\) 0 0
\(649\) 4.06607 2.34755i 0.159607 0.0921492i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.5913i 0.805800i −0.915244 0.402900i \(-0.868002\pi\)
0.915244 0.402900i \(-0.131998\pi\)
\(654\) 0 0
\(655\) 34.7041 1.35600
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 41.7687 24.1152i 1.62708 0.939395i 0.642121 0.766604i \(-0.278055\pi\)
0.984959 0.172791i \(-0.0552785\pi\)
\(660\) 0 0
\(661\) −23.8342 + 13.7607i −0.927042 + 0.535228i −0.885875 0.463924i \(-0.846441\pi\)
−0.0411674 + 0.999152i \(0.513108\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.5149 2.83720i 0.795535 0.110022i
\(666\) 0 0
\(667\) 20.2836 + 35.1323i 0.785385 + 1.36033i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.80146 + 8.31637i −0.185358 + 0.321050i
\(672\) 0 0
\(673\) −17.5734 30.4380i −0.677404 1.17330i −0.975760 0.218844i \(-0.929771\pi\)
0.298355 0.954455i \(-0.403562\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.9428 38.0060i 0.843329 1.46069i −0.0437349 0.999043i \(-0.513926\pi\)
0.887064 0.461646i \(-0.152741\pi\)
\(678\) 0 0
\(679\) 10.5684 1.46161i 0.405579 0.0560913i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17.9331 10.3537i −0.686190 0.396172i 0.115993 0.993250i \(-0.462995\pi\)
−0.802183 + 0.597078i \(0.796328\pi\)
\(684\) 0 0
\(685\) 2.38896i 0.0912773i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.0482 + 34.7246i 0.763777 + 1.32290i
\(690\) 0 0
\(691\) −15.8678 9.16129i −0.603640 0.348512i 0.166832 0.985985i \(-0.446646\pi\)
−0.770472 + 0.637474i \(0.779980\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.9209 + 7.45988i 0.490117 + 0.282969i
\(696\) 0 0
\(697\) −6.00582 10.4024i −0.227487 0.394018i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.62840i 0.0992734i 0.998767 + 0.0496367i \(0.0158064\pi\)
−0.998767 + 0.0496367i \(0.984194\pi\)
\(702\) 0 0
\(703\) 33.8410 + 19.5381i 1.27634 + 0.736894i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.58340 + 2.27013i 0.209985 + 0.0853771i
\(708\) 0 0
\(709\) 8.16634 14.1445i 0.306693 0.531208i −0.670944 0.741508i \(-0.734111\pi\)
0.977637 + 0.210300i \(0.0674441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 23.1054 + 40.0198i 0.865305 + 1.49875i
\(714\) 0 0
\(715\) 4.69869 8.13838i 0.175721 0.304358i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.15485 5.46436i −0.117656 0.203786i 0.801182 0.598420i \(-0.204205\pi\)
−0.918838 + 0.394634i \(0.870871\pi\)
\(720\) 0 0
\(721\) −8.84204 + 21.7470i −0.329295 + 0.809901i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.407589 + 0.235322i −0.0151375 + 0.00873962i
\(726\) 0 0
\(727\) 14.3318 8.27447i 0.531537 0.306883i −0.210105 0.977679i \(-0.567381\pi\)
0.741642 + 0.670796i \(0.234047\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13.4263 0.496589
\(732\) 0 0
\(733\) 19.9109i 0.735425i −0.929939 0.367713i \(-0.880141\pi\)
0.929939 0.367713i \(-0.119859\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.0837 + 5.82183i −0.371438 + 0.214450i
\(738\) 0 0
\(739\) −24.1545 + 41.8368i −0.888536 + 1.53899i −0.0469307 + 0.998898i \(0.514944\pi\)
−0.841606 + 0.540092i \(0.818389\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.17819 + 4.14433i 0.263342 + 0.152041i 0.625858 0.779937i \(-0.284749\pi\)
−0.362516 + 0.931978i \(0.618082\pi\)
\(744\) 0 0
\(745\) 39.0075i 1.42912i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.73938 + 0.240555i −0.0635555 + 0.00878968i
\(750\) 0 0
\(751\) −25.0229 −0.913099 −0.456549 0.889698i \(-0.650915\pi\)
−0.456549 + 0.889698i \(0.650915\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.76683 0.137089
\(756\) 0 0
\(757\) −18.7744 −0.682368 −0.341184 0.939997i \(-0.610828\pi\)
−0.341184 + 0.939997i \(0.610828\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.1927 −0.840733 −0.420367 0.907354i \(-0.638099\pi\)
−0.420367 + 0.907354i \(0.638099\pi\)
\(762\) 0 0
\(763\) 33.5588 26.1004i 1.21491 0.944897i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.4393i 0.521372i
\(768\) 0 0
\(769\) 27.8202 + 16.0620i 1.00322 + 0.579210i 0.909200 0.416360i \(-0.136695\pi\)
0.0940211 + 0.995570i \(0.470028\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.14023 14.0993i 0.292784 0.507116i −0.681683 0.731647i \(-0.738752\pi\)
0.974467 + 0.224531i \(0.0720851\pi\)
\(774\) 0 0
\(775\) −0.464292 + 0.268059i −0.0166779 + 0.00962896i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.70281i 0.204324i
\(780\) 0 0
\(781\) 4.30705 0.154119
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.1608 8.75308i 0.541112 0.312411i
\(786\) 0 0
\(787\) −0.799139 + 0.461383i −0.0284862 + 0.0164465i −0.514175 0.857685i \(-0.671902\pi\)
0.485689 + 0.874132i \(0.338569\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.12780 11.7362i −0.324547 0.417290i
\(792\) 0 0
\(793\) −14.7664 25.5761i −0.524369 0.908235i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.98084 5.16296i 0.105587 0.182881i −0.808391 0.588646i \(-0.799661\pi\)
0.913978 + 0.405764i \(0.132995\pi\)
\(798\) 0 0
\(799\) −31.6597 54.8362i −1.12004 1.93997i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.69174 8.12634i 0.165568 0.286772i
\(804\) 0 0
\(805\) 12.8640 31.6391i 0.453397 1.11513i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.0267 + 10.4077i 0.633784 + 0.365916i 0.782216 0.623007i \(-0.214089\pi\)
−0.148432 + 0.988923i \(0.547423\pi\)
\(810\) 0 0
\(811\) 11.7101i 0.411198i −0.978636 0.205599i \(-0.934086\pi\)
0.978636 0.205599i \(-0.0659142\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.6457 21.9030i −0.442959 0.767228i
\(816\) 0 0
\(817\) −5.52043 3.18722i −0.193135 0.111507i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.483490 0.279143i −0.0168739 0.00974215i 0.491539 0.870855i \(-0.336434\pi\)
−0.508413 + 0.861113i \(0.669768\pi\)
\(822\) 0 0
\(823\) −20.7043 35.8609i −0.721707 1.25003i −0.960315 0.278918i \(-0.910024\pi\)
0.238607 0.971116i \(-0.423309\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.83309i 0.307157i −0.988136 0.153578i \(-0.950920\pi\)
0.988136 0.153578i \(-0.0490797\pi\)
\(828\) 0 0
\(829\) −7.60753 4.39221i −0.264220 0.152548i 0.362038 0.932163i \(-0.382081\pi\)
−0.626258 + 0.779616i \(0.715414\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 50.0143 14.1037i 1.73289 0.488663i
\(834\) 0 0
\(835\) −17.8927 + 30.9911i −0.619204 + 1.07249i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.6778 20.2265i −0.403161 0.698295i 0.590944 0.806712i \(-0.298755\pi\)
−0.994106 + 0.108417i \(0.965422\pi\)
\(840\) 0 0
\(841\) 9.85573 17.0706i 0.339853 0.588642i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0142428 + 0.0246693i 0.000489967 + 0.000848648i
\(846\) 0 0
\(847\) −23.5880 9.59054i −0.810492 0.329535i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 55.8091 32.2214i 1.91311 1.10453i
\(852\) 0 0
\(853\) −13.8754 + 8.01099i −0.475086 + 0.274291i −0.718366 0.695665i \(-0.755110\pi\)
0.243280 + 0.969956i \(0.421777\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.8241 0.574700 0.287350 0.957826i \(-0.407226\pi\)
0.287350 + 0.957826i \(0.407226\pi\)
\(858\) 0 0
\(859\) 47.5953i 1.62393i 0.583705 + 0.811966i \(0.301603\pi\)
−0.583705 + 0.811966i \(0.698397\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.7300 25.8249i 1.52263 0.879089i 0.522985 0.852342i \(-0.324818\pi\)
0.999642 0.0267477i \(-0.00851508\pi\)
\(864\) 0 0
\(865\) −7.66628 + 13.2784i −0.260661 + 0.451478i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.59136 2.65082i −0.155751 0.0899230i
\(870\) 0 0
\(871\) 35.8088i 1.21334i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 27.5837 + 11.2151i 0.932499 + 0.379141i
\(876\) 0 0
\(877\) 14.3056 0.483066 0.241533 0.970393i \(-0.422350\pi\)
0.241533 + 0.970393i \(0.422350\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.4054 0.350566 0.175283 0.984518i \(-0.443916\pi\)
0.175283 + 0.984518i \(0.443916\pi\)
\(882\) 0 0
\(883\) 44.9042 1.51115 0.755574 0.655064i \(-0.227358\pi\)
0.755574 + 0.655064i \(0.227358\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.948519 −0.0318482 −0.0159241 0.999873i \(-0.505069\pi\)
−0.0159241 + 0.999873i \(0.505069\pi\)
\(888\) 0 0
\(889\) −18.9805 7.71720i −0.636585 0.258827i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 30.0624i 1.00600i
\(894\) 0 0
\(895\) 11.7434 + 6.78006i 0.392539 + 0.226632i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 27.7440 48.0541i 0.925316 1.60269i
\(900\) 0 0
\(901\) 71.4600 41.2574i 2.38068 1.37448i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.1336i 0.403335i
\(906\) 0 0
\(907\) 35.0550 1.16398 0.581990 0.813196i \(-0.302274\pi\)
0.581990 + 0.813196i \(0.302274\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42.8316 24.7288i 1.41907 0.819303i 0.422857 0.906196i \(-0.361027\pi\)
0.996218 + 0.0868934i \(0.0276940\pi\)
\(912\) 0 0
\(913\) 0.794307 0.458593i 0.0262877 0.0151772i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38.2976 15.5713i −1.26470 0.514209i
\(918\) 0 0
\(919\) 8.34526 + 14.4544i 0.275285 + 0.476807i 0.970207 0.242278i \(-0.0778945\pi\)
−0.694922 + 0.719085i \(0.744561\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.62295 + 11.4713i −0.217997 + 0.377582i
\(924\) 0 0
\(925\) 0.373818 + 0.647472i 0.0122911 + 0.0212888i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.31860 9.21208i 0.174498 0.302239i −0.765490 0.643448i \(-0.777503\pi\)
0.939987 + 0.341209i \(0.110837\pi\)
\(930\) 0 0
\(931\) −23.9122 6.07381i −0.783692 0.199061i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.7480 9.66948i −0.547719 0.316226i
\(936\) 0 0
\(937\) 26.7085i 0.872528i 0.899819 + 0.436264i \(0.143699\pi\)
−0.899819 + 0.436264i \(0.856301\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.29534 5.70769i −0.107425 0.186065i 0.807301 0.590139i \(-0.200927\pi\)
−0.914726 + 0.404074i \(0.867594\pi\)
\(942\) 0 0
\(943\) 8.14481 + 4.70241i 0.265232 + 0.153131i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.8907 14.3706i −0.808838 0.466983i 0.0377144 0.999289i \(-0.487992\pi\)
−0.846552 + 0.532306i \(0.821326\pi\)
\(948\) 0 0
\(949\) 14.4290 + 24.9917i 0.468384 + 0.811265i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 18.2616i 0.591550i 0.955258 + 0.295775i \(0.0955778\pi\)
−0.955258 + 0.295775i \(0.904422\pi\)
\(954\) 0 0
\(955\) −11.5718 6.68098i −0.374455 0.216191i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.07189 2.63633i 0.0346133 0.0851315i
\(960\) 0 0
\(961\) 16.1037 27.8925i 0.519476 0.899758i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.41889 + 11.1178i 0.206631 + 0.357896i
\(966\) 0 0
\(967\) 12.5899 21.8064i 0.404865 0.701247i −0.589441 0.807812i \(-0.700652\pi\)
0.994306 + 0.106565i \(0.0339851\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.7214 + 41.0866i 0.761255 + 1.31853i 0.942204 + 0.335040i \(0.108750\pi\)
−0.180949 + 0.983492i \(0.557917\pi\)
\(972\) 0 0
\(973\) −10.9117 14.0298i −0.349812 0.449774i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −47.9278 + 27.6711i −1.53334 + 0.885277i −0.534141 + 0.845396i \(0.679365\pi\)
−0.999204 + 0.0398814i \(0.987302\pi\)
\(978\) 0 0
\(979\) −3.56429 + 2.05784i −0.113915 + 0.0657690i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25.3499 0.808537 0.404268 0.914640i \(-0.367526\pi\)
0.404268 + 0.914640i \(0.367526\pi\)
\(984\) 0 0
\(985\) 17.6643i 0.562832i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.10404 + 5.25622i −0.289492 + 0.167138i
\(990\) 0 0
\(991\) −12.9683 + 22.4618i −0.411953 + 0.713523i −0.995103 0.0988413i \(-0.968486\pi\)
0.583151 + 0.812364i \(0.301820\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −34.4753 19.9043i −1.09294 0.631010i
\(996\) 0 0
\(997\) 15.9283i 0.504453i −0.967668 0.252227i \(-0.918837\pi\)
0.967668 0.252227i \(-0.0811629\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.17.20 48
3.2 odd 2 504.2.cx.a.185.13 yes 48
4.3 odd 2 3024.2.df.e.17.20 48
7.5 odd 6 1512.2.bs.a.1097.20 48
9.2 odd 6 1512.2.bs.a.521.20 48
9.7 even 3 504.2.bs.a.353.5 yes 48
12.11 even 2 1008.2.df.e.689.12 48
21.5 even 6 504.2.bs.a.257.5 48
28.19 even 6 3024.2.ca.e.2609.20 48
36.7 odd 6 1008.2.ca.e.353.20 48
36.11 even 6 3024.2.ca.e.2033.20 48
63.47 even 6 inner 1512.2.cx.a.89.20 48
63.61 odd 6 504.2.cx.a.425.13 yes 48
84.47 odd 6 1008.2.ca.e.257.20 48
252.47 odd 6 3024.2.df.e.1601.20 48
252.187 even 6 1008.2.df.e.929.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.5 48 21.5 even 6
504.2.bs.a.353.5 yes 48 9.7 even 3
504.2.cx.a.185.13 yes 48 3.2 odd 2
504.2.cx.a.425.13 yes 48 63.61 odd 6
1008.2.ca.e.257.20 48 84.47 odd 6
1008.2.ca.e.353.20 48 36.7 odd 6
1008.2.df.e.689.12 48 12.11 even 2
1008.2.df.e.929.12 48 252.187 even 6
1512.2.bs.a.521.20 48 9.2 odd 6
1512.2.bs.a.1097.20 48 7.5 odd 6
1512.2.cx.a.17.20 48 1.1 even 1 trivial
1512.2.cx.a.89.20 48 63.47 even 6 inner
3024.2.ca.e.2033.20 48 36.11 even 6
3024.2.ca.e.2609.20 48 28.19 even 6
3024.2.df.e.17.20 48 4.3 odd 2
3024.2.df.e.1601.20 48 252.47 odd 6