Properties

Label 504.2.bs.a.353.5
Level $504$
Weight $2$
Character 504.353
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(257,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.5
Character \(\chi\) \(=\) 504.353
Dual form 504.2.bs.a.257.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41991 + 0.991901i) q^{3} +(-1.11047 + 1.92339i) q^{5} +(0.362456 + 2.62081i) q^{7} +(1.03226 - 2.81681i) q^{9} +(-1.01582 + 0.586482i) q^{11} +(-3.12404 + 1.80366i) q^{13} +(-0.331050 - 3.83251i) q^{15} +(3.71178 - 6.42899i) q^{17} +(-3.05231 + 1.76225i) q^{19} +(-3.11423 - 3.36178i) q^{21} +(-5.03374 - 2.90623i) q^{23} +(0.0337168 + 0.0583992i) q^{25} +(1.32828 + 5.02351i) q^{27} +(-6.04430 - 3.48968i) q^{29} +7.95031i q^{31} +(0.860632 - 1.84034i) q^{33} +(-5.44333 - 2.21318i) q^{35} +(-5.54350 - 9.60163i) q^{37} +(2.64678 - 5.65977i) q^{39} +(0.809022 + 1.40127i) q^{41} +(0.904302 - 1.56630i) q^{43} +(4.27153 + 5.11343i) q^{45} -8.52953 q^{47} +(-6.73725 + 1.89985i) q^{49} +(1.10654 + 12.8103i) q^{51} +(9.62611 + 5.55764i) q^{53} -2.60508i q^{55} +(2.58602 - 5.52983i) q^{57} -4.00276 q^{59} +8.18688i q^{61} +(7.75647 + 1.68440i) q^{63} -8.01166i q^{65} +9.92669 q^{67} +(10.0301 - 0.866397i) q^{69} +3.67194i q^{71} +(6.92803 + 3.99990i) q^{73} +(-0.105801 - 0.0494776i) q^{75} +(-1.90525 - 2.44969i) q^{77} -4.51987 q^{79} +(-6.86886 - 5.81539i) q^{81} +(0.390969 - 0.677179i) q^{83} +(8.24363 + 14.2784i) q^{85} +(12.0438 - 1.04033i) q^{87} +(-1.75440 - 3.03870i) q^{89} +(-5.85938 - 7.53375i) q^{91} +(-7.88592 - 11.2887i) q^{93} -7.82772i q^{95} +(3.49226 + 2.01626i) q^{97} +(0.603418 + 3.46677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} + 8 q^{21} - 12 q^{23} - 24 q^{25} - 18 q^{27} + 18 q^{29} - 10 q^{39} + 6 q^{41} - 6 q^{43} + 6 q^{45} + 36 q^{47} + 6 q^{49} - 12 q^{51} + 12 q^{53} + 4 q^{57} + 46 q^{63} - 54 q^{75}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41991 + 0.991901i −0.819783 + 0.572674i
\(4\) 0 0
\(5\) −1.11047 + 1.92339i −0.496617 + 0.860166i −0.999992 0.00390210i \(-0.998758\pi\)
0.503376 + 0.864068i \(0.332091\pi\)
\(6\) 0 0
\(7\) 0.362456 + 2.62081i 0.136995 + 0.990572i
\(8\) 0 0
\(9\) 1.03226 2.81681i 0.344088 0.938937i
\(10\) 0 0
\(11\) −1.01582 + 0.586482i −0.306280 + 0.176831i −0.645261 0.763962i \(-0.723251\pi\)
0.338980 + 0.940793i \(0.389918\pi\)
\(12\) 0 0
\(13\) −3.12404 + 1.80366i −0.866453 + 0.500247i −0.866168 0.499753i \(-0.833424\pi\)
−0.000284763 1.00000i \(0.500091\pi\)
\(14\) 0 0
\(15\) −0.331050 3.83251i −0.0854767 0.989549i
\(16\) 0 0
\(17\) 3.71178 6.42899i 0.900238 1.55926i 0.0730533 0.997328i \(-0.476726\pi\)
0.827185 0.561930i \(-0.189941\pi\)
\(18\) 0 0
\(19\) −3.05231 + 1.76225i −0.700249 + 0.404289i −0.807440 0.589950i \(-0.799148\pi\)
0.107191 + 0.994238i \(0.465814\pi\)
\(20\) 0 0
\(21\) −3.11423 3.36178i −0.679581 0.733600i
\(22\) 0 0
\(23\) −5.03374 2.90623i −1.04961 0.605991i −0.127068 0.991894i \(-0.540557\pi\)
−0.922539 + 0.385903i \(0.873890\pi\)
\(24\) 0 0
\(25\) 0.0337168 + 0.0583992i 0.00674336 + 0.0116798i
\(26\) 0 0
\(27\) 1.32828 + 5.02351i 0.255628 + 0.966775i
\(28\) 0 0
\(29\) −6.04430 3.48968i −1.12240 0.648017i −0.180387 0.983596i \(-0.557735\pi\)
−0.942012 + 0.335579i \(0.891068\pi\)
\(30\) 0 0
\(31\) 7.95031i 1.42792i 0.700187 + 0.713959i \(0.253100\pi\)
−0.700187 + 0.713959i \(0.746900\pi\)
\(32\) 0 0
\(33\) 0.860632 1.84034i 0.149817 0.320362i
\(34\) 0 0
\(35\) −5.44333 2.21318i −0.920090 0.374096i
\(36\) 0 0
\(37\) −5.54350 9.60163i −0.911346 1.57850i −0.812164 0.583429i \(-0.801711\pi\)
−0.0991818 0.995069i \(-0.531623\pi\)
\(38\) 0 0
\(39\) 2.64678 5.65977i 0.423825 0.906289i
\(40\) 0 0
\(41\) 0.809022 + 1.40127i 0.126348 + 0.218841i 0.922259 0.386572i \(-0.126341\pi\)
−0.795911 + 0.605414i \(0.793008\pi\)
\(42\) 0 0
\(43\) 0.904302 1.56630i 0.137905 0.238858i −0.788799 0.614652i \(-0.789297\pi\)
0.926703 + 0.375794i \(0.122630\pi\)
\(44\) 0 0
\(45\) 4.27153 + 5.11343i 0.636762 + 0.762265i
\(46\) 0 0
\(47\) −8.52953 −1.24416 −0.622080 0.782954i \(-0.713712\pi\)
−0.622080 + 0.782954i \(0.713712\pi\)
\(48\) 0 0
\(49\) −6.73725 + 1.89985i −0.962465 + 0.271407i
\(50\) 0 0
\(51\) 1.10654 + 12.8103i 0.154947 + 1.79380i
\(52\) 0 0
\(53\) 9.62611 + 5.55764i 1.32225 + 0.763400i 0.984087 0.177688i \(-0.0568617\pi\)
0.338161 + 0.941088i \(0.390195\pi\)
\(54\) 0 0
\(55\) 2.60508i 0.351269i
\(56\) 0 0
\(57\) 2.58602 5.52983i 0.342526 0.732444i
\(58\) 0 0
\(59\) −4.00276 −0.521115 −0.260557 0.965458i \(-0.583906\pi\)
−0.260557 + 0.965458i \(0.583906\pi\)
\(60\) 0 0
\(61\) 8.18688i 1.04822i 0.851650 + 0.524111i \(0.175602\pi\)
−0.851650 + 0.524111i \(0.824398\pi\)
\(62\) 0 0
\(63\) 7.75647 + 1.68440i 0.977223 + 0.212214i
\(64\) 0 0
\(65\) 8.01166i 0.993724i
\(66\) 0 0
\(67\) 9.92669 1.21274 0.606369 0.795183i \(-0.292625\pi\)
0.606369 + 0.795183i \(0.292625\pi\)
\(68\) 0 0
\(69\) 10.0301 0.866397i 1.20749 0.104302i
\(70\) 0 0
\(71\) 3.67194i 0.435779i 0.975973 + 0.217890i \(0.0699172\pi\)
−0.975973 + 0.217890i \(0.930083\pi\)
\(72\) 0 0
\(73\) 6.92803 + 3.99990i 0.810865 + 0.468153i 0.847256 0.531185i \(-0.178253\pi\)
−0.0363913 + 0.999338i \(0.511586\pi\)
\(74\) 0 0
\(75\) −0.105801 0.0494776i −0.0122168 0.00571318i
\(76\) 0 0
\(77\) −1.90525 2.44969i −0.217123 0.279168i
\(78\) 0 0
\(79\) −4.51987 −0.508525 −0.254262 0.967135i \(-0.581833\pi\)
−0.254262 + 0.967135i \(0.581833\pi\)
\(80\) 0 0
\(81\) −6.86886 5.81539i −0.763207 0.646155i
\(82\) 0 0
\(83\) 0.390969 0.677179i 0.0429145 0.0743300i −0.843770 0.536704i \(-0.819669\pi\)
0.886685 + 0.462374i \(0.153002\pi\)
\(84\) 0 0
\(85\) 8.24363 + 14.2784i 0.894147 + 1.54871i
\(86\) 0 0
\(87\) 12.0438 1.04033i 1.29123 0.111535i
\(88\) 0 0
\(89\) −1.75440 3.03870i −0.185966 0.322102i 0.757936 0.652329i \(-0.226208\pi\)
−0.943901 + 0.330227i \(0.892875\pi\)
\(90\) 0 0
\(91\) −5.85938 7.53375i −0.614230 0.789752i
\(92\) 0 0
\(93\) −7.88592 11.2887i −0.817732 1.17058i
\(94\) 0 0
\(95\) 7.82772i 0.803107i
\(96\) 0 0
\(97\) 3.49226 + 2.01626i 0.354585 + 0.204720i 0.666703 0.745324i \(-0.267705\pi\)
−0.312118 + 0.950043i \(0.601038\pi\)
\(98\) 0 0
\(99\) 0.603418 + 3.46677i 0.0606458 + 0.348424i
\(100\) 0 0
\(101\) 1.13904 + 1.97288i 0.113339 + 0.196309i 0.917115 0.398624i \(-0.130512\pi\)
−0.803775 + 0.594933i \(0.797179\pi\)
\(102\) 0 0
\(103\) 7.68427 + 4.43651i 0.757153 + 0.437143i 0.828273 0.560325i \(-0.189324\pi\)
−0.0711195 + 0.997468i \(0.522657\pi\)
\(104\) 0 0
\(105\) 9.92427 2.25673i 0.968509 0.220234i
\(106\) 0 0
\(107\) 0.574764 0.331840i 0.0555646 0.0320802i −0.471960 0.881620i \(-0.656453\pi\)
0.527525 + 0.849540i \(0.323120\pi\)
\(108\) 0 0
\(109\) −8.03435 + 13.9159i −0.769551 + 1.33290i 0.168256 + 0.985743i \(0.446187\pi\)
−0.937807 + 0.347158i \(0.887147\pi\)
\(110\) 0 0
\(111\) 17.3951 + 8.13480i 1.65107 + 0.772121i
\(112\) 0 0
\(113\) −4.86666 + 2.80977i −0.457817 + 0.264321i −0.711126 0.703065i \(-0.751814\pi\)
0.253309 + 0.967385i \(0.418481\pi\)
\(114\) 0 0
\(115\) 11.1796 6.45456i 1.04250 0.601891i
\(116\) 0 0
\(117\) 1.85575 + 10.6617i 0.171564 + 0.985674i
\(118\) 0 0
\(119\) 18.1945 + 7.39763i 1.66789 + 0.678139i
\(120\) 0 0
\(121\) −4.81208 + 8.33476i −0.437462 + 0.757706i
\(122\) 0 0
\(123\) −2.53865 1.18720i −0.228903 0.107046i
\(124\) 0 0
\(125\) −11.2545 −1.00663
\(126\) 0 0
\(127\) 7.74425 0.687191 0.343595 0.939118i \(-0.388355\pi\)
0.343595 + 0.939118i \(0.388355\pi\)
\(128\) 0 0
\(129\) 0.269588 + 3.12097i 0.0237359 + 0.274786i
\(130\) 0 0
\(131\) −7.81293 + 13.5324i −0.682619 + 1.18233i 0.291559 + 0.956553i \(0.405826\pi\)
−0.974179 + 0.225778i \(0.927507\pi\)
\(132\) 0 0
\(133\) −5.72486 7.36078i −0.496408 0.638261i
\(134\) 0 0
\(135\) −11.1372 3.02366i −0.958536 0.260235i
\(136\) 0 0
\(137\) 0.931541 0.537826i 0.0795870 0.0459496i −0.459678 0.888085i \(-0.652035\pi\)
0.539265 + 0.842136i \(0.318702\pi\)
\(138\) 0 0
\(139\) −5.81776 + 3.35889i −0.493456 + 0.284897i −0.726007 0.687687i \(-0.758626\pi\)
0.232551 + 0.972584i \(0.425293\pi\)
\(140\) 0 0
\(141\) 12.1111 8.46045i 1.01994 0.712498i
\(142\) 0 0
\(143\) 2.11563 3.66439i 0.176918 0.306431i
\(144\) 0 0
\(145\) 13.4240 7.75036i 1.11480 0.643633i
\(146\) 0 0
\(147\) 7.68180 9.38030i 0.633584 0.773674i
\(148\) 0 0
\(149\) 15.2105 + 8.78176i 1.24609 + 0.719430i 0.970327 0.241796i \(-0.0777365\pi\)
0.275762 + 0.961226i \(0.411070\pi\)
\(150\) 0 0
\(151\) −0.848028 1.46883i −0.0690115 0.119531i 0.829455 0.558574i \(-0.188651\pi\)
−0.898466 + 0.439042i \(0.855318\pi\)
\(152\) 0 0
\(153\) −14.2777 17.0918i −1.15428 1.38179i
\(154\) 0 0
\(155\) −15.2915 8.82858i −1.22825 0.709128i
\(156\) 0 0
\(157\) 7.88233i 0.629078i 0.949244 + 0.314539i \(0.101850\pi\)
−0.949244 + 0.314539i \(0.898150\pi\)
\(158\) 0 0
\(159\) −19.1808 + 1.65683i −1.52114 + 0.131395i
\(160\) 0 0
\(161\) 5.79216 14.2458i 0.456486 1.12273i
\(162\) 0 0
\(163\) −5.69385 9.86204i −0.445977 0.772455i 0.552143 0.833750i \(-0.313810\pi\)
−0.998120 + 0.0612949i \(0.980477\pi\)
\(164\) 0 0
\(165\) 2.58398 + 3.69897i 0.201163 + 0.287964i
\(166\) 0 0
\(167\) −8.05638 13.9541i −0.623422 1.07980i −0.988844 0.148956i \(-0.952409\pi\)
0.365422 0.930842i \(-0.380925\pi\)
\(168\) 0 0
\(169\) 0.00641296 0.0111076i 0.000493305 0.000854429i
\(170\) 0 0
\(171\) 1.81314 + 10.4169i 0.138654 + 0.796601i
\(172\) 0 0
\(173\) 6.90364 0.524874 0.262437 0.964949i \(-0.415474\pi\)
0.262437 + 0.964949i \(0.415474\pi\)
\(174\) 0 0
\(175\) −0.140832 + 0.109532i −0.0106459 + 0.00827986i
\(176\) 0 0
\(177\) 5.68354 3.97034i 0.427201 0.298429i
\(178\) 0 0
\(179\) 5.28759 + 3.05279i 0.395213 + 0.228176i 0.684416 0.729091i \(-0.260057\pi\)
−0.289203 + 0.957268i \(0.593390\pi\)
\(180\) 0 0
\(181\) 5.46329i 0.406083i 0.979170 + 0.203041i \(0.0650826\pi\)
−0.979170 + 0.203041i \(0.934917\pi\)
\(182\) 0 0
\(183\) −8.12057 11.6246i −0.600290 0.859315i
\(184\) 0 0
\(185\) 24.6236 1.81036
\(186\) 0 0
\(187\) 8.70756i 0.636760i
\(188\) 0 0
\(189\) −12.6842 + 5.30196i −0.922640 + 0.385661i
\(190\) 0 0
\(191\) 6.01636i 0.435328i 0.976024 + 0.217664i \(0.0698438\pi\)
−0.976024 + 0.217664i \(0.930156\pi\)
\(192\) 0 0
\(193\) −5.78034 −0.416078 −0.208039 0.978121i \(-0.566708\pi\)
−0.208039 + 0.978121i \(0.566708\pi\)
\(194\) 0 0
\(195\) 7.94677 + 11.3758i 0.569080 + 0.814638i
\(196\) 0 0
\(197\) 7.95354i 0.566666i 0.959022 + 0.283333i \(0.0914402\pi\)
−0.959022 + 0.283333i \(0.908560\pi\)
\(198\) 0 0
\(199\) −15.5229 8.96214i −1.10039 0.635309i −0.164065 0.986450i \(-0.552461\pi\)
−0.936323 + 0.351141i \(0.885794\pi\)
\(200\) 0 0
\(201\) −14.0950 + 9.84629i −0.994182 + 0.694504i
\(202\) 0 0
\(203\) 6.95498 17.1058i 0.488144 1.20059i
\(204\) 0 0
\(205\) −3.59358 −0.250986
\(206\) 0 0
\(207\) −13.3825 + 11.1791i −0.930145 + 0.777001i
\(208\) 0 0
\(209\) 2.06706 3.58026i 0.142982 0.247651i
\(210\) 0 0
\(211\) −4.00200 6.93166i −0.275509 0.477195i 0.694755 0.719247i \(-0.255513\pi\)
−0.970263 + 0.242052i \(0.922180\pi\)
\(212\) 0 0
\(213\) −3.64220 5.21381i −0.249559 0.357244i
\(214\) 0 0
\(215\) 2.00840 + 3.47865i 0.136972 + 0.237242i
\(216\) 0 0
\(217\) −20.8362 + 2.88164i −1.41446 + 0.195618i
\(218\) 0 0
\(219\) −13.8047 + 1.19244i −0.932832 + 0.0805776i
\(220\) 0 0
\(221\) 26.7792i 1.80136i
\(222\) 0 0
\(223\) 14.2405 + 8.22177i 0.953616 + 0.550570i 0.894202 0.447663i \(-0.147744\pi\)
0.0594134 + 0.998233i \(0.481077\pi\)
\(224\) 0 0
\(225\) 0.199304 0.0346904i 0.0132869 0.00231269i
\(226\) 0 0
\(227\) −7.99649 13.8503i −0.530746 0.919279i −0.999356 0.0358740i \(-0.988578\pi\)
0.468610 0.883405i \(-0.344755\pi\)
\(228\) 0 0
\(229\) −13.3898 7.73058i −0.884820 0.510851i −0.0125754 0.999921i \(-0.504003\pi\)
−0.872245 + 0.489070i \(0.837336\pi\)
\(230\) 0 0
\(231\) 5.13511 + 1.58851i 0.337866 + 0.104516i
\(232\) 0 0
\(233\) −16.5268 + 9.54175i −1.08271 + 0.625101i −0.931625 0.363421i \(-0.881609\pi\)
−0.151081 + 0.988521i \(0.548275\pi\)
\(234\) 0 0
\(235\) 9.47178 16.4056i 0.617871 1.07018i
\(236\) 0 0
\(237\) 6.41778 4.48326i 0.416880 0.291219i
\(238\) 0 0
\(239\) 7.37626 4.25868i 0.477130 0.275471i −0.242089 0.970254i \(-0.577833\pi\)
0.719220 + 0.694783i \(0.244499\pi\)
\(240\) 0 0
\(241\) 19.6047 11.3188i 1.26285 0.729107i 0.289225 0.957261i \(-0.406602\pi\)
0.973625 + 0.228154i \(0.0732690\pi\)
\(242\) 0 0
\(243\) 15.5214 + 1.44408i 0.995700 + 0.0926377i
\(244\) 0 0
\(245\) 3.82736 15.0681i 0.244521 0.962664i
\(246\) 0 0
\(247\) 6.35703 11.0107i 0.404488 0.700594i
\(248\) 0 0
\(249\) 0.116555 + 1.34933i 0.00738635 + 0.0855105i
\(250\) 0 0
\(251\) −7.74235 −0.488693 −0.244346 0.969688i \(-0.578573\pi\)
−0.244346 + 0.969688i \(0.578573\pi\)
\(252\) 0 0
\(253\) 6.81781 0.428632
\(254\) 0 0
\(255\) −25.8679 12.0971i −1.61991 0.757549i
\(256\) 0 0
\(257\) −11.8945 + 20.6019i −0.741958 + 1.28511i 0.209645 + 0.977778i \(0.432769\pi\)
−0.951603 + 0.307331i \(0.900564\pi\)
\(258\) 0 0
\(259\) 23.1547 18.0086i 1.43877 1.11900i
\(260\) 0 0
\(261\) −16.0691 + 13.4234i −0.994652 + 0.830887i
\(262\) 0 0
\(263\) −17.7831 + 10.2671i −1.09655 + 0.633094i −0.935313 0.353822i \(-0.884882\pi\)
−0.161238 + 0.986916i \(0.551549\pi\)
\(264\) 0 0
\(265\) −21.3790 + 12.3432i −1.31330 + 0.758235i
\(266\) 0 0
\(267\) 5.50517 + 2.57448i 0.336911 + 0.157556i
\(268\) 0 0
\(269\) −6.17188 + 10.6900i −0.376306 + 0.651782i −0.990522 0.137357i \(-0.956139\pi\)
0.614215 + 0.789138i \(0.289473\pi\)
\(270\) 0 0
\(271\) −25.3900 + 14.6589i −1.54233 + 0.890467i −0.543643 + 0.839317i \(0.682955\pi\)
−0.998691 + 0.0511505i \(0.983711\pi\)
\(272\) 0 0
\(273\) 15.7925 + 4.88529i 0.955806 + 0.295671i
\(274\) 0 0
\(275\) −0.0685002 0.0395486i −0.00413072 0.00238487i
\(276\) 0 0
\(277\) 1.24115 + 2.14974i 0.0745735 + 0.129165i 0.900901 0.434025i \(-0.142907\pi\)
−0.826327 + 0.563190i \(0.809574\pi\)
\(278\) 0 0
\(279\) 22.3945 + 8.20683i 1.34073 + 0.491330i
\(280\) 0 0
\(281\) 20.0970 + 11.6030i 1.19889 + 0.692178i 0.960307 0.278944i \(-0.0899845\pi\)
0.238581 + 0.971123i \(0.423318\pi\)
\(282\) 0 0
\(283\) 27.3000i 1.62282i −0.584480 0.811408i \(-0.698702\pi\)
0.584480 0.811408i \(-0.301298\pi\)
\(284\) 0 0
\(285\) 7.76432 + 11.1146i 0.459919 + 0.658373i
\(286\) 0 0
\(287\) −3.37922 + 2.62819i −0.199469 + 0.155137i
\(288\) 0 0
\(289\) −19.0546 33.0035i −1.12086 1.94138i
\(290\) 0 0
\(291\) −6.95861 + 0.601081i −0.407921 + 0.0352360i
\(292\) 0 0
\(293\) −4.15628 7.19888i −0.242812 0.420563i 0.718702 0.695318i \(-0.244737\pi\)
−0.961514 + 0.274755i \(0.911403\pi\)
\(294\) 0 0
\(295\) 4.44494 7.69886i 0.258794 0.448245i
\(296\) 0 0
\(297\) −4.29549 4.32396i −0.249250 0.250901i
\(298\) 0 0
\(299\) 20.9675 1.21258
\(300\) 0 0
\(301\) 4.43273 + 1.80229i 0.255498 + 0.103882i
\(302\) 0 0
\(303\) −3.57424 1.67149i −0.205335 0.0960245i
\(304\) 0 0
\(305\) −15.7465 9.09127i −0.901645 0.520565i
\(306\) 0 0
\(307\) 22.4908i 1.28362i 0.766864 + 0.641810i \(0.221816\pi\)
−0.766864 + 0.641810i \(0.778184\pi\)
\(308\) 0 0
\(309\) −15.3115 + 1.32260i −0.871042 + 0.0752401i
\(310\) 0 0
\(311\) 9.67799 0.548789 0.274394 0.961617i \(-0.411523\pi\)
0.274394 + 0.961617i \(0.411523\pi\)
\(312\) 0 0
\(313\) 24.4969i 1.38465i −0.721587 0.692324i \(-0.756587\pi\)
0.721587 0.692324i \(-0.243413\pi\)
\(314\) 0 0
\(315\) −11.8531 + 13.0482i −0.667845 + 0.735185i
\(316\) 0 0
\(317\) 9.18619i 0.515948i 0.966152 + 0.257974i \(0.0830549\pi\)
−0.966152 + 0.257974i \(0.916945\pi\)
\(318\) 0 0
\(319\) 8.18654 0.458358
\(320\) 0 0
\(321\) −0.486958 + 1.04129i −0.0271794 + 0.0581192i
\(322\) 0 0
\(323\) 26.1644i 1.45582i
\(324\) 0 0
\(325\) −0.210665 0.121628i −0.0116856 0.00674668i
\(326\) 0 0
\(327\) −2.39518 27.7285i −0.132454 1.53339i
\(328\) 0 0
\(329\) −3.09157 22.3542i −0.170444 1.23243i
\(330\) 0 0
\(331\) 25.7197 1.41368 0.706842 0.707372i \(-0.250119\pi\)
0.706842 + 0.707372i \(0.250119\pi\)
\(332\) 0 0
\(333\) −32.7683 + 5.70358i −1.79569 + 0.312554i
\(334\) 0 0
\(335\) −11.0233 + 19.0929i −0.602266 + 1.04316i
\(336\) 0 0
\(337\) 8.80657 + 15.2534i 0.479724 + 0.830907i 0.999730 0.0232560i \(-0.00740329\pi\)
−0.520005 + 0.854163i \(0.674070\pi\)
\(338\) 0 0
\(339\) 4.12319 8.81685i 0.223941 0.478865i
\(340\) 0 0
\(341\) −4.66272 8.07606i −0.252500 0.437343i
\(342\) 0 0
\(343\) −7.42110 16.9684i −0.400702 0.916209i
\(344\) 0 0
\(345\) −9.47173 + 20.2539i −0.509941 + 1.09044i
\(346\) 0 0
\(347\) 8.35297i 0.448411i −0.974542 0.224206i \(-0.928021\pi\)
0.974542 0.224206i \(-0.0719787\pi\)
\(348\) 0 0
\(349\) 16.4062 + 9.47211i 0.878203 + 0.507031i 0.870065 0.492936i \(-0.164076\pi\)
0.00813729 + 0.999967i \(0.497410\pi\)
\(350\) 0 0
\(351\) −13.2103 13.2979i −0.705115 0.709788i
\(352\) 0 0
\(353\) 12.7486 + 22.0811i 0.678537 + 1.17526i 0.975421 + 0.220347i \(0.0707191\pi\)
−0.296884 + 0.954913i \(0.595948\pi\)
\(354\) 0 0
\(355\) −7.06257 4.07758i −0.374842 0.216415i
\(356\) 0 0
\(357\) −33.1722 + 7.54319i −1.75566 + 0.399228i
\(358\) 0 0
\(359\) 17.4128 10.0533i 0.919013 0.530592i 0.0356928 0.999363i \(-0.488636\pi\)
0.883320 + 0.468771i \(0.155303\pi\)
\(360\) 0 0
\(361\) −3.28892 + 5.69658i −0.173101 + 0.299820i
\(362\) 0 0
\(363\) −1.43456 16.6077i −0.0752950 0.871677i
\(364\) 0 0
\(365\) −15.3867 + 8.88353i −0.805378 + 0.464985i
\(366\) 0 0
\(367\) −20.1654 + 11.6425i −1.05263 + 0.607735i −0.923384 0.383878i \(-0.874588\pi\)
−0.129244 + 0.991613i \(0.541255\pi\)
\(368\) 0 0
\(369\) 4.78223 0.832384i 0.248953 0.0433322i
\(370\) 0 0
\(371\) −11.0765 + 27.2426i −0.575061 + 1.41436i
\(372\) 0 0
\(373\) 12.5625 21.7588i 0.650460 1.12663i −0.332551 0.943085i \(-0.607909\pi\)
0.983011 0.183545i \(-0.0587573\pi\)
\(374\) 0 0
\(375\) 15.9803 11.1633i 0.825217 0.576471i
\(376\) 0 0
\(377\) 25.1768 1.29667
\(378\) 0 0
\(379\) 32.3000 1.65914 0.829569 0.558404i \(-0.188586\pi\)
0.829569 + 0.558404i \(0.188586\pi\)
\(380\) 0 0
\(381\) −10.9961 + 7.68153i −0.563347 + 0.393536i
\(382\) 0 0
\(383\) 4.77182 8.26503i 0.243828 0.422323i −0.717973 0.696071i \(-0.754930\pi\)
0.961802 + 0.273748i \(0.0882633\pi\)
\(384\) 0 0
\(385\) 6.82741 0.944226i 0.347957 0.0481222i
\(386\) 0 0
\(387\) −3.47849 4.16408i −0.176821 0.211672i
\(388\) 0 0
\(389\) 11.7953 6.81005i 0.598048 0.345283i −0.170225 0.985405i \(-0.554450\pi\)
0.768273 + 0.640122i \(0.221116\pi\)
\(390\) 0 0
\(391\) −37.3682 + 21.5746i −1.88979 + 1.09107i
\(392\) 0 0
\(393\) −2.32917 26.9644i −0.117491 1.36017i
\(394\) 0 0
\(395\) 5.01917 8.69346i 0.252542 0.437415i
\(396\) 0 0
\(397\) 2.59589 1.49874i 0.130284 0.0752196i −0.433441 0.901182i \(-0.642701\pi\)
0.563726 + 0.825962i \(0.309368\pi\)
\(398\) 0 0
\(399\) 15.4299 + 4.77313i 0.772462 + 0.238955i
\(400\) 0 0
\(401\) 11.2875 + 6.51682i 0.563669 + 0.325434i 0.754617 0.656166i \(-0.227823\pi\)
−0.190948 + 0.981600i \(0.561156\pi\)
\(402\) 0 0
\(403\) −14.3397 24.8371i −0.714311 1.23722i
\(404\) 0 0
\(405\) 18.8129 6.75367i 0.934821 0.335593i
\(406\) 0 0
\(407\) 11.2624 + 6.50233i 0.558255 + 0.322309i
\(408\) 0 0
\(409\) 32.8723i 1.62543i −0.582662 0.812714i \(-0.697989\pi\)
0.582662 0.812714i \(-0.302011\pi\)
\(410\) 0 0
\(411\) −0.789231 + 1.68766i −0.0389299 + 0.0832461i
\(412\) 0 0
\(413\) −1.45082 10.4905i −0.0713903 0.516201i
\(414\) 0 0
\(415\) 0.868319 + 1.50397i 0.0426241 + 0.0738271i
\(416\) 0 0
\(417\) 4.92899 10.5399i 0.241374 0.516144i
\(418\) 0 0
\(419\) −11.0687 19.1716i −0.540742 0.936593i −0.998862 0.0477024i \(-0.984810\pi\)
0.458119 0.888891i \(-0.348523\pi\)
\(420\) 0 0
\(421\) 12.1963 21.1245i 0.594409 1.02955i −0.399221 0.916855i \(-0.630719\pi\)
0.993630 0.112692i \(-0.0359472\pi\)
\(422\) 0 0
\(423\) −8.80473 + 24.0261i −0.428101 + 1.16819i
\(424\) 0 0
\(425\) 0.500597 0.0242825
\(426\) 0 0
\(427\) −21.4562 + 2.96738i −1.03834 + 0.143602i
\(428\) 0 0
\(429\) 0.630707 + 7.30158i 0.0304508 + 0.352524i
\(430\) 0 0
\(431\) 12.2611 + 7.07897i 0.590598 + 0.340982i 0.765334 0.643634i \(-0.222574\pi\)
−0.174736 + 0.984615i \(0.555907\pi\)
\(432\) 0 0
\(433\) 8.90220i 0.427813i −0.976854 0.213906i \(-0.931381\pi\)
0.976854 0.213906i \(-0.0686187\pi\)
\(434\) 0 0
\(435\) −11.3733 + 24.3201i −0.545306 + 1.16606i
\(436\) 0 0
\(437\) 20.4861 0.979981
\(438\) 0 0
\(439\) 16.1624i 0.771389i 0.922626 + 0.385695i \(0.126038\pi\)
−0.922626 + 0.385695i \(0.873962\pi\)
\(440\) 0 0
\(441\) −1.60310 + 20.9387i −0.0763382 + 0.997082i
\(442\) 0 0
\(443\) 17.4477i 0.828963i −0.910058 0.414482i \(-0.863963\pi\)
0.910058 0.414482i \(-0.136037\pi\)
\(444\) 0 0
\(445\) 7.79281 0.369415
\(446\) 0 0
\(447\) −30.3080 + 2.61799i −1.43352 + 0.123827i
\(448\) 0 0
\(449\) 9.14988i 0.431809i −0.976414 0.215905i \(-0.930730\pi\)
0.976414 0.215905i \(-0.0692700\pi\)
\(450\) 0 0
\(451\) −1.64364 0.948954i −0.0773958 0.0446845i
\(452\) 0 0
\(453\) 2.66105 + 1.24444i 0.125027 + 0.0584687i
\(454\) 0 0
\(455\) 20.9970 2.90387i 0.984354 0.136135i
\(456\) 0 0
\(457\) 14.1151 0.660279 0.330139 0.943932i \(-0.392904\pi\)
0.330139 + 0.943932i \(0.392904\pi\)
\(458\) 0 0
\(459\) 37.2264 + 10.1067i 1.73758 + 0.471739i
\(460\) 0 0
\(461\) 17.5323 30.3668i 0.816561 1.41432i −0.0916412 0.995792i \(-0.529211\pi\)
0.908202 0.418532i \(-0.137455\pi\)
\(462\) 0 0
\(463\) 15.9985 + 27.7103i 0.743515 + 1.28781i 0.950885 + 0.309543i \(0.100176\pi\)
−0.207370 + 0.978263i \(0.566490\pi\)
\(464\) 0 0
\(465\) 30.4696 2.63195i 1.41300 0.122054i
\(466\) 0 0
\(467\) 8.02671 + 13.9027i 0.371432 + 0.643339i 0.989786 0.142561i \(-0.0455337\pi\)
−0.618354 + 0.785899i \(0.712200\pi\)
\(468\) 0 0
\(469\) 3.59798 + 26.0159i 0.166139 + 1.20130i
\(470\) 0 0
\(471\) −7.81849 11.1922i −0.360257 0.515708i
\(472\) 0 0
\(473\) 2.12143i 0.0975434i
\(474\) 0 0
\(475\) −0.205828 0.118835i −0.00944406 0.00545253i
\(476\) 0 0
\(477\) 25.5915 21.3780i 1.17176 0.978831i
\(478\) 0 0
\(479\) 15.7481 + 27.2764i 0.719547 + 1.24629i 0.961179 + 0.275925i \(0.0889840\pi\)
−0.241632 + 0.970368i \(0.577683\pi\)
\(480\) 0 0
\(481\) 34.6362 + 19.9972i 1.57928 + 0.911796i
\(482\) 0 0
\(483\) 5.90613 + 25.9730i 0.268738 + 1.18181i
\(484\) 0 0
\(485\) −7.75609 + 4.47798i −0.352186 + 0.203335i
\(486\) 0 0
\(487\) 10.7924 18.6930i 0.489052 0.847062i −0.510869 0.859659i \(-0.670676\pi\)
0.999921 + 0.0125963i \(0.00400964\pi\)
\(488\) 0 0
\(489\) 17.8669 + 8.35543i 0.807969 + 0.377846i
\(490\) 0 0
\(491\) −28.9290 + 16.7022i −1.30555 + 0.753758i −0.981349 0.192232i \(-0.938427\pi\)
−0.324197 + 0.945990i \(0.605094\pi\)
\(492\) 0 0
\(493\) −44.8702 + 25.9058i −2.02085 + 1.16674i
\(494\) 0 0
\(495\) −7.33803 2.68913i −0.329820 0.120868i
\(496\) 0 0
\(497\) −9.62344 + 1.33091i −0.431670 + 0.0596997i
\(498\) 0 0
\(499\) −16.0722 + 27.8378i −0.719489 + 1.24619i 0.241713 + 0.970348i \(0.422291\pi\)
−0.961202 + 0.275844i \(0.911043\pi\)
\(500\) 0 0
\(501\) 25.2804 + 11.8223i 1.12944 + 0.528183i
\(502\) 0 0
\(503\) 21.7295 0.968872 0.484436 0.874827i \(-0.339025\pi\)
0.484436 + 0.874827i \(0.339025\pi\)
\(504\) 0 0
\(505\) −5.05949 −0.225145
\(506\) 0 0
\(507\) 0.00191182 + 0.0221327i 8.49067e−5 + 0.000982950i
\(508\) 0 0
\(509\) 11.9432 20.6862i 0.529373 0.916901i −0.470040 0.882645i \(-0.655761\pi\)
0.999413 0.0342559i \(-0.0109061\pi\)
\(510\) 0 0
\(511\) −7.97186 + 19.6068i −0.352654 + 0.867354i
\(512\) 0 0
\(513\) −12.9070 12.9926i −0.569859 0.573636i
\(514\) 0 0
\(515\) −17.0663 + 9.85322i −0.752030 + 0.434185i
\(516\) 0 0
\(517\) 8.66444 5.00242i 0.381062 0.220006i
\(518\) 0 0
\(519\) −9.80251 + 6.84772i −0.430283 + 0.300582i
\(520\) 0 0
\(521\) −13.5098 + 23.3996i −0.591874 + 1.02516i 0.402106 + 0.915593i \(0.368278\pi\)
−0.993980 + 0.109562i \(0.965055\pi\)
\(522\) 0 0
\(523\) 27.2136 15.7118i 1.18997 0.687028i 0.231669 0.972795i \(-0.425582\pi\)
0.958299 + 0.285766i \(0.0922482\pi\)
\(524\) 0 0
\(525\) 0.0913232 0.295217i 0.00398567 0.0128843i
\(526\) 0 0
\(527\) 51.1125 + 29.5098i 2.22649 + 1.28547i
\(528\) 0 0
\(529\) 5.39234 + 9.33981i 0.234450 + 0.406079i
\(530\) 0 0
\(531\) −4.13190 + 11.2750i −0.179309 + 0.489294i
\(532\) 0 0
\(533\) −5.05483 2.91841i −0.218949 0.126410i
\(534\) 0 0
\(535\) 1.47399i 0.0637263i
\(536\) 0 0
\(537\) −10.5359 + 0.910090i −0.454660 + 0.0392733i
\(538\) 0 0
\(539\) 5.72959 5.88118i 0.246791 0.253320i
\(540\) 0 0
\(541\) −0.0969057 0.167846i −0.00416630 0.00721624i 0.863935 0.503604i \(-0.167993\pi\)
−0.868101 + 0.496388i \(0.834660\pi\)
\(542\) 0 0
\(543\) −5.41904 7.75735i −0.232553 0.332900i
\(544\) 0 0
\(545\) −17.8438 30.9064i −0.764344 1.32388i
\(546\) 0 0
\(547\) 0.987053 1.70963i 0.0422033 0.0730983i −0.844152 0.536104i \(-0.819896\pi\)
0.886355 + 0.463005i \(0.153229\pi\)
\(548\) 0 0
\(549\) 23.0609 + 8.45102i 0.984215 + 0.360681i
\(550\) 0 0
\(551\) 24.5988 1.04794
\(552\) 0 0
\(553\) −1.63825 11.8457i −0.0696655 0.503730i
\(554\) 0 0
\(555\) −34.9631 + 24.4241i −1.48410 + 1.03675i
\(556\) 0 0
\(557\) 18.3383 + 10.5876i 0.777018 + 0.448612i 0.835373 0.549684i \(-0.185252\pi\)
−0.0583543 + 0.998296i \(0.518585\pi\)
\(558\) 0 0
\(559\) 6.52423i 0.275946i
\(560\) 0 0
\(561\) −8.63704 12.3639i −0.364656 0.522005i
\(562\) 0 0
\(563\) −34.1289 −1.43836 −0.719182 0.694822i \(-0.755483\pi\)
−0.719182 + 0.694822i \(0.755483\pi\)
\(564\) 0 0
\(565\) 12.4806i 0.525064i
\(566\) 0 0
\(567\) 12.7514 20.1098i 0.535507 0.844531i
\(568\) 0 0
\(569\) 11.0389i 0.462773i 0.972862 + 0.231387i \(0.0743262\pi\)
−0.972862 + 0.231387i \(0.925674\pi\)
\(570\) 0 0
\(571\) 41.3233 1.72933 0.864663 0.502353i \(-0.167532\pi\)
0.864663 + 0.502353i \(0.167532\pi\)
\(572\) 0 0
\(573\) −5.96763 8.54266i −0.249301 0.356875i
\(574\) 0 0
\(575\) 0.391955i 0.0163456i
\(576\) 0 0
\(577\) 12.5253 + 7.23151i 0.521437 + 0.301052i 0.737522 0.675323i \(-0.235996\pi\)
−0.216085 + 0.976374i \(0.569329\pi\)
\(578\) 0 0
\(579\) 8.20754 5.73352i 0.341094 0.238277i
\(580\) 0 0
\(581\) 1.91646 + 0.779208i 0.0795083 + 0.0323270i
\(582\) 0 0
\(583\) −13.0378 −0.539972
\(584\) 0 0
\(585\) −22.5673 8.27015i −0.933044 0.341929i
\(586\) 0 0
\(587\) 0.248251 0.429983i 0.0102464 0.0177473i −0.860857 0.508847i \(-0.830072\pi\)
0.871103 + 0.491100i \(0.163405\pi\)
\(588\) 0 0
\(589\) −14.0105 24.2669i −0.577292 0.999898i
\(590\) 0 0
\(591\) −7.88912 11.2933i −0.324515 0.464543i
\(592\) 0 0
\(593\) −12.2302 21.1834i −0.502236 0.869898i −0.999997 0.00258345i \(-0.999178\pi\)
0.497761 0.867314i \(-0.334156\pi\)
\(594\) 0 0
\(595\) −34.4329 + 26.7802i −1.41161 + 1.09788i
\(596\) 0 0
\(597\) 30.9306 2.67177i 1.26590 0.109348i
\(598\) 0 0
\(599\) 18.8348i 0.769570i −0.923006 0.384785i \(-0.874276\pi\)
0.923006 0.384785i \(-0.125724\pi\)
\(600\) 0 0
\(601\) 6.37572 + 3.68102i 0.260071 + 0.150152i 0.624367 0.781131i \(-0.285357\pi\)
−0.364296 + 0.931283i \(0.618690\pi\)
\(602\) 0 0
\(603\) 10.2470 27.9616i 0.417289 1.13868i
\(604\) 0 0
\(605\) −10.6873 18.5110i −0.434502 0.752579i
\(606\) 0 0
\(607\) −25.1081 14.4961i −1.01910 0.588380i −0.105260 0.994445i \(-0.533568\pi\)
−0.913845 + 0.406064i \(0.866901\pi\)
\(608\) 0 0
\(609\) 7.09184 + 31.1873i 0.287376 + 1.26377i
\(610\) 0 0
\(611\) 26.6466 15.3844i 1.07801 0.622387i
\(612\) 0 0
\(613\) 12.4334 21.5352i 0.502179 0.869799i −0.497818 0.867282i \(-0.665865\pi\)
0.999997 0.00251771i \(-0.000801413\pi\)
\(614\) 0 0
\(615\) 5.10254 3.56447i 0.205754 0.143733i
\(616\) 0 0
\(617\) −37.4629 + 21.6292i −1.50820 + 0.870759i −0.508245 + 0.861213i \(0.669706\pi\)
−0.999954 + 0.00954684i \(0.996961\pi\)
\(618\) 0 0
\(619\) −6.45380 + 3.72610i −0.259400 + 0.149765i −0.624061 0.781376i \(-0.714518\pi\)
0.364661 + 0.931140i \(0.381185\pi\)
\(620\) 0 0
\(621\) 7.91327 29.1473i 0.317548 1.16964i
\(622\) 0 0
\(623\) 7.32796 5.69933i 0.293588 0.228339i
\(624\) 0 0
\(625\) 12.3291 21.3547i 0.493166 0.854188i
\(626\) 0 0
\(627\) 0.616227 + 7.13395i 0.0246097 + 0.284902i
\(628\) 0 0
\(629\) −82.3050 −3.28171
\(630\) 0 0
\(631\) −9.67068 −0.384984 −0.192492 0.981299i \(-0.561657\pi\)
−0.192492 + 0.981299i \(0.561657\pi\)
\(632\) 0 0
\(633\) 12.5580 + 5.87272i 0.499135 + 0.233420i
\(634\) 0 0
\(635\) −8.59975 + 14.8952i −0.341271 + 0.591098i
\(636\) 0 0
\(637\) 17.6207 18.0870i 0.698159 0.716631i
\(638\) 0 0
\(639\) 10.3432 + 3.79041i 0.409169 + 0.149946i
\(640\) 0 0
\(641\) −26.8113 + 15.4795i −1.05898 + 0.611404i −0.925151 0.379600i \(-0.876062\pi\)
−0.133832 + 0.991004i \(0.542728\pi\)
\(642\) 0 0
\(643\) −6.99262 + 4.03719i −0.275762 + 0.159211i −0.631503 0.775373i \(-0.717562\pi\)
0.355741 + 0.934585i \(0.384228\pi\)
\(644\) 0 0
\(645\) −6.30221 2.94722i −0.248149 0.116047i
\(646\) 0 0
\(647\) −4.54355 + 7.86966i −0.178625 + 0.309388i −0.941410 0.337265i \(-0.890498\pi\)
0.762785 + 0.646653i \(0.223832\pi\)
\(648\) 0 0
\(649\) 4.06607 2.34755i 0.159607 0.0921492i
\(650\) 0 0
\(651\) 26.7272 24.7591i 1.04752 0.970387i
\(652\) 0 0
\(653\) 17.8326 + 10.2957i 0.697844 + 0.402900i 0.806544 0.591174i \(-0.201335\pi\)
−0.108700 + 0.994075i \(0.534669\pi\)
\(654\) 0 0
\(655\) −17.3520 30.0546i −0.678000 1.17433i
\(656\) 0 0
\(657\) 18.4185 15.3860i 0.718575 0.600265i
\(658\) 0 0
\(659\) −41.7687 24.1152i −1.62708 0.939395i −0.984959 0.172791i \(-0.944722\pi\)
−0.642121 0.766604i \(-0.721945\pi\)
\(660\) 0 0
\(661\) 27.5213i 1.07046i −0.844708 0.535228i \(-0.820226\pi\)
0.844708 0.535228i \(-0.179774\pi\)
\(662\) 0 0
\(663\) −26.5623 38.0239i −1.03159 1.47673i
\(664\) 0 0
\(665\) 20.5149 2.83720i 0.795535 0.110022i
\(666\) 0 0
\(667\) 20.2836 + 35.1323i 0.785385 + 1.36033i
\(668\) 0 0
\(669\) −28.3754 + 2.45105i −1.09706 + 0.0947631i
\(670\) 0 0
\(671\) −4.80146 8.31637i −0.185358 0.321050i
\(672\) 0 0
\(673\) −17.5734 + 30.4380i −0.677404 + 1.17330i 0.298355 + 0.954455i \(0.403562\pi\)
−0.975760 + 0.218844i \(0.929771\pi\)
\(674\) 0 0
\(675\) −0.248584 + 0.246947i −0.00956799 + 0.00950500i
\(676\) 0 0
\(677\) −43.8855 −1.68666 −0.843329 0.537397i \(-0.819408\pi\)
−0.843329 + 0.537397i \(0.819408\pi\)
\(678\) 0 0
\(679\) −4.01843 + 9.88334i −0.154213 + 0.379288i
\(680\) 0 0
\(681\) 25.0924 + 11.7344i 0.961544 + 0.449665i
\(682\) 0 0
\(683\) −17.9331 10.3537i −0.686190 0.396172i 0.115993 0.993250i \(-0.462995\pi\)
−0.802183 + 0.597078i \(0.796328\pi\)
\(684\) 0 0
\(685\) 2.38896i 0.0912773i
\(686\) 0 0
\(687\) 26.6802 2.30462i 1.01791 0.0879267i
\(688\) 0 0
\(689\) −40.0965 −1.52755
\(690\) 0 0
\(691\) 18.3226i 0.697023i 0.937304 + 0.348512i \(0.113313\pi\)
−0.937304 + 0.348512i \(0.886687\pi\)
\(692\) 0 0
\(693\) −8.86702 + 2.83799i −0.336830 + 0.107806i
\(694\) 0 0
\(695\) 14.9198i 0.565939i
\(696\) 0 0
\(697\) 12.0116 0.454973
\(698\) 0 0
\(699\) 14.0020 29.9413i 0.529605 1.13248i
\(700\) 0 0
\(701\) 2.62840i 0.0992734i 0.998767 + 0.0496367i \(0.0158064\pi\)
−0.998767 + 0.0496367i \(0.984194\pi\)
\(702\) 0 0
\(703\) 33.8410 + 19.5381i 1.27634 + 0.736894i
\(704\) 0 0
\(705\) 2.82370 + 32.6895i 0.106347 + 1.23116i
\(706\) 0 0
\(707\) −4.75769 + 3.70030i −0.178931 + 0.139164i
\(708\) 0 0
\(709\) −16.3327 −0.613387 −0.306693 0.951808i \(-0.599223\pi\)
−0.306693 + 0.951808i \(0.599223\pi\)
\(710\) 0 0
\(711\) −4.66570 + 12.7316i −0.174977 + 0.477473i
\(712\) 0 0
\(713\) 23.1054 40.0198i 0.865305 1.49875i
\(714\) 0 0
\(715\) 4.69869 + 8.13838i 0.175721 + 0.304358i
\(716\) 0 0
\(717\) −6.24940 + 13.3634i −0.233388 + 0.499067i
\(718\) 0 0
\(719\) −3.15485 5.46436i −0.117656 0.203786i 0.801182 0.598420i \(-0.204205\pi\)
−0.918838 + 0.394634i \(0.870871\pi\)
\(720\) 0 0
\(721\) −8.84204 + 21.7470i −0.329295 + 0.809901i
\(722\) 0 0
\(723\) −16.6097 + 35.5175i −0.617722 + 1.32091i
\(724\) 0 0
\(725\) 0.470643i 0.0174792i
\(726\) 0 0
\(727\) −14.3318 8.27447i −0.531537 0.306883i 0.210105 0.977679i \(-0.432619\pi\)
−0.741642 + 0.670796i \(0.765953\pi\)
\(728\) 0 0
\(729\) −23.4713 + 13.3453i −0.869309 + 0.494269i
\(730\) 0 0
\(731\) −6.71314 11.6275i −0.248294 0.430058i
\(732\) 0 0
\(733\) 17.2433 + 9.95544i 0.636897 + 0.367713i 0.783418 0.621495i \(-0.213474\pi\)
−0.146521 + 0.989208i \(0.546808\pi\)
\(734\) 0 0
\(735\) 9.51156 + 25.1916i 0.350839 + 0.929207i
\(736\) 0 0
\(737\) −10.0837 + 5.82183i −0.371438 + 0.214450i
\(738\) 0 0
\(739\) −24.1545 + 41.8368i −0.888536 + 1.53899i −0.0469307 + 0.998898i \(0.514944\pi\)
−0.841606 + 0.540092i \(0.818389\pi\)
\(740\) 0 0
\(741\) 1.89514 + 21.9397i 0.0696197 + 0.805975i
\(742\) 0 0
\(743\) −7.17819 + 4.14433i −0.263342 + 0.152041i −0.625858 0.779937i \(-0.715251\pi\)
0.362516 + 0.931978i \(0.381918\pi\)
\(744\) 0 0
\(745\) −33.7815 + 19.5037i −1.23766 + 0.714562i
\(746\) 0 0
\(747\) −1.50390 1.80031i −0.0550249 0.0658701i
\(748\) 0 0
\(749\) 1.07802 + 1.38607i 0.0393898 + 0.0506458i
\(750\) 0 0
\(751\) 12.5114 21.6705i 0.456549 0.790767i −0.542227 0.840232i \(-0.682419\pi\)
0.998776 + 0.0494658i \(0.0157519\pi\)
\(752\) 0 0
\(753\) 10.9934 7.67964i 0.400622 0.279862i
\(754\) 0 0
\(755\) 3.76683 0.137089
\(756\) 0 0
\(757\) −18.7744 −0.682368 −0.341184 0.939997i \(-0.610828\pi\)
−0.341184 + 0.939997i \(0.610828\pi\)
\(758\) 0 0
\(759\) −9.68065 + 6.76259i −0.351385 + 0.245467i
\(760\) 0 0
\(761\) 11.5963 20.0854i 0.420367 0.728097i −0.575609 0.817725i \(-0.695235\pi\)
0.995975 + 0.0896289i \(0.0285681\pi\)
\(762\) 0 0
\(763\) −39.3830 16.0126i −1.42576 0.579694i
\(764\) 0 0
\(765\) 48.7291 8.48168i 1.76180 0.306656i
\(766\) 0 0
\(767\) 12.5048 7.21963i 0.451521 0.260686i
\(768\) 0 0
\(769\) −27.8202 + 16.0620i −1.00322 + 0.579210i −0.909200 0.416360i \(-0.863305\pi\)
−0.0940211 + 0.995570i \(0.529972\pi\)
\(770\) 0 0
\(771\) −3.54595 41.0509i −0.127704 1.47841i
\(772\) 0 0
\(773\) 8.14023 14.0993i 0.292784 0.507116i −0.681683 0.731647i \(-0.738752\pi\)
0.974467 + 0.224531i \(0.0720851\pi\)
\(774\) 0 0
\(775\) −0.464292 + 0.268059i −0.0166779 + 0.00962896i
\(776\) 0 0
\(777\) −15.0148 + 48.5377i −0.538652 + 1.74128i
\(778\) 0 0
\(779\) −4.93878 2.85141i −0.176950 0.102162i
\(780\) 0 0
\(781\) −2.15353 3.73002i −0.0770593 0.133471i
\(782\) 0 0
\(783\) 9.50192 34.9989i 0.339571 1.25076i
\(784\) 0 0
\(785\) −15.1608 8.75308i −0.541112 0.312411i
\(786\) 0 0
\(787\) 0.922766i 0.0328931i −0.999865 0.0164465i \(-0.994765\pi\)
0.999865 0.0164465i \(-0.00523533\pi\)
\(788\) 0 0
\(789\) 15.0664 32.2173i 0.536377 1.14697i
\(790\) 0 0
\(791\) −9.12780 11.7362i −0.324547 0.417290i
\(792\) 0 0
\(793\) −14.7664 25.5761i −0.524369 0.908235i
\(794\) 0 0
\(795\) 18.1130 38.7320i 0.642401 1.37368i
\(796\) 0 0
\(797\) 2.98084 + 5.16296i 0.105587 + 0.182881i 0.913978 0.405764i \(-0.132995\pi\)
−0.808391 + 0.588646i \(0.799661\pi\)
\(798\) 0 0
\(799\) −31.6597 + 54.8362i −1.12004 + 1.93997i
\(800\) 0 0
\(801\) −10.3705 + 1.80506i −0.366422 + 0.0637786i
\(802\) 0 0
\(803\) −9.38348 −0.331136
\(804\) 0 0
\(805\) 20.9683 + 26.9601i 0.739034 + 0.950220i
\(806\) 0 0
\(807\) −1.83994 21.3007i −0.0647691 0.749820i
\(808\) 0 0
\(809\) 18.0267 + 10.4077i 0.633784 + 0.365916i 0.782216 0.623007i \(-0.214089\pi\)
−0.148432 + 0.988923i \(0.547423\pi\)
\(810\) 0 0
\(811\) 11.7101i 0.411198i −0.978636 0.205599i \(-0.934086\pi\)
0.978636 0.205599i \(-0.0659142\pi\)
\(812\) 0 0
\(813\) 21.5112 45.9987i 0.754432 1.61324i
\(814\) 0 0
\(815\) 25.2914 0.885919
\(816\) 0 0
\(817\) 6.37444i 0.223013i
\(818\) 0 0
\(819\) −27.2696 + 8.72795i −0.952877 + 0.304979i
\(820\) 0 0
\(821\) 0.558286i 0.0194843i 0.999953 + 0.00974215i \(0.00310107\pi\)
−0.999953 + 0.00974215i \(0.996899\pi\)
\(822\) 0 0
\(823\) 41.4087 1.44341 0.721707 0.692198i \(-0.243358\pi\)
0.721707 + 0.692198i \(0.243358\pi\)
\(824\) 0 0
\(825\) 0.136492 0.0117901i 0.00475204 0.000410479i
\(826\) 0 0
\(827\) 8.83309i 0.307157i −0.988136 0.153578i \(-0.950920\pi\)
0.988136 0.153578i \(-0.0490797\pi\)
\(828\) 0 0
\(829\) −7.60753 4.39221i −0.264220 0.152548i 0.362038 0.932163i \(-0.382081\pi\)
−0.626258 + 0.779616i \(0.715414\pi\)
\(830\) 0 0
\(831\) −3.89464 1.82132i −0.135104 0.0631810i
\(832\) 0 0
\(833\) −12.7931 + 50.3655i −0.443253 + 1.74506i
\(834\) 0 0
\(835\) 35.7855 1.23841
\(836\) 0 0
\(837\) −39.9385 + 10.5602i −1.38048 + 0.365015i
\(838\) 0 0
\(839\) −11.6778 + 20.2265i −0.403161 + 0.698295i −0.994106 0.108417i \(-0.965422\pi\)
0.590944 + 0.806712i \(0.298755\pi\)
\(840\) 0 0
\(841\) 9.85573 + 17.0706i 0.339853 + 0.588642i
\(842\) 0 0
\(843\) −40.0449 + 3.45906i −1.37922 + 0.119136i
\(844\) 0 0
\(845\) 0.0142428 + 0.0246693i 0.000489967 + 0.000848648i
\(846\) 0 0
\(847\) −23.5880 9.59054i −0.810492 0.329535i
\(848\) 0 0
\(849\) 27.0789 + 38.7634i 0.929345 + 1.33036i
\(850\) 0 0
\(851\) 64.4428i 2.20907i
\(852\) 0 0
\(853\) 13.8754 + 8.01099i 0.475086 + 0.274291i 0.718366 0.695665i \(-0.244890\pi\)
−0.243280 + 0.969956i \(0.578223\pi\)
\(854\) 0 0
\(855\) −22.0492 8.08027i −0.754067 0.276340i
\(856\) 0 0
\(857\) −8.41205 14.5701i −0.287350 0.497705i 0.685826 0.727765i \(-0.259441\pi\)
−0.973176 + 0.230060i \(0.926108\pi\)
\(858\) 0 0
\(859\) −41.2188 23.7977i −1.40637 0.811966i −0.411331 0.911486i \(-0.634936\pi\)
−0.995036 + 0.0995201i \(0.968269\pi\)
\(860\) 0 0
\(861\) 2.19127 7.08363i 0.0746782 0.241409i
\(862\) 0 0
\(863\) 44.7300 25.8249i 1.52263 0.879089i 0.522985 0.852342i \(-0.324818\pi\)
0.999642 0.0267477i \(-0.00851508\pi\)
\(864\) 0 0
\(865\) −7.66628 + 13.2784i −0.260661 + 0.451478i
\(866\) 0 0
\(867\) 59.7919 + 27.9616i 2.03064 + 0.949625i
\(868\) 0 0
\(869\) 4.59136 2.65082i 0.155751 0.0899230i
\(870\) 0 0
\(871\) −31.0114 + 17.9044i −1.05078 + 0.606668i
\(872\) 0 0
\(873\) 9.28435 7.75573i 0.314228 0.262492i
\(874\) 0 0
\(875\) −4.07924 29.4958i −0.137904 0.997138i
\(876\) 0 0
\(877\) −7.15280 + 12.3890i −0.241533 + 0.418347i −0.961151 0.276023i \(-0.910983\pi\)
0.719618 + 0.694370i \(0.244317\pi\)
\(878\) 0 0
\(879\) 13.0421 + 6.09912i 0.439899 + 0.205718i
\(880\) 0 0
\(881\) 10.4054 0.350566 0.175283 0.984518i \(-0.443916\pi\)
0.175283 + 0.984518i \(0.443916\pi\)
\(882\) 0 0
\(883\) 44.9042 1.51115 0.755574 0.655064i \(-0.227358\pi\)
0.755574 + 0.655064i \(0.227358\pi\)
\(884\) 0 0
\(885\) 1.32511 + 15.3406i 0.0445432 + 0.515668i
\(886\) 0 0
\(887\) 0.474260 0.821442i 0.0159241 0.0275813i −0.857954 0.513727i \(-0.828264\pi\)
0.873878 + 0.486146i \(0.161598\pi\)
\(888\) 0 0
\(889\) 2.80695 + 20.2962i 0.0941419 + 0.680712i
\(890\) 0 0
\(891\) 10.3881 + 1.87891i 0.348015 + 0.0629458i
\(892\) 0 0
\(893\) 26.0348 15.0312i 0.871221 0.503000i
\(894\) 0 0
\(895\) −11.7434 + 6.78006i −0.392539 + 0.226632i
\(896\) 0 0
\(897\) −29.7718 + 20.7976i −0.994052 + 0.694413i
\(898\) 0 0
\(899\) 27.7440 48.0541i 0.925316 1.60269i
\(900\) 0 0
\(901\) 71.4600 41.2574i 2.38068 1.37448i
\(902\) 0 0
\(903\) −8.08175 + 1.83775i −0.268944 + 0.0611566i
\(904\) 0 0
\(905\) −10.5080 6.06681i −0.349299 0.201668i
\(906\) 0 0
\(907\) −17.5275 30.3585i −0.581990 1.00804i −0.995243 0.0974205i \(-0.968941\pi\)
0.413253 0.910616i \(-0.364393\pi\)
\(908\) 0 0
\(909\) 6.73303 1.17194i 0.223321 0.0388707i
\(910\) 0 0
\(911\) −42.8316 24.7288i −1.41907 0.819303i −0.422857 0.906196i \(-0.638973\pi\)
−0.996218 + 0.0868934i \(0.972306\pi\)
\(912\) 0 0
\(913\) 0.917186i 0.0303544i
\(914\) 0 0
\(915\) 31.3763 2.71026i 1.03727 0.0895986i
\(916\) 0 0
\(917\) −38.2976 15.5713i −1.26470 0.514209i
\(918\) 0 0
\(919\) 8.34526 + 14.4544i 0.275285 + 0.476807i 0.970207 0.242278i \(-0.0778945\pi\)
−0.694922 + 0.719085i \(0.744561\pi\)
\(920\) 0 0
\(921\) −22.3087 31.9349i −0.735096 1.05229i
\(922\) 0 0
\(923\) −6.62295 11.4713i −0.217997 0.377582i
\(924\) 0 0
\(925\) 0.373818 0.647472i 0.0122911 0.0212888i
\(926\) 0 0
\(927\) 20.4290 17.0655i 0.670977 0.560504i
\(928\) 0 0
\(929\) −10.6372 −0.348995 −0.174498 0.984658i \(-0.555830\pi\)
−0.174498 + 0.984658i \(0.555830\pi\)
\(930\) 0 0
\(931\) 17.2162 17.6717i 0.564238 0.579166i
\(932\) 0 0
\(933\) −13.7418 + 9.59961i −0.449888 + 0.314277i
\(934\) 0 0
\(935\) −16.7480 9.66948i −0.547719 0.316226i
\(936\) 0 0
\(937\) 26.7085i 0.872528i 0.899819 + 0.436264i \(0.143699\pi\)
−0.899819 + 0.436264i \(0.856301\pi\)
\(938\) 0 0
\(939\) 24.2985 + 34.7833i 0.792952 + 1.13511i
\(940\) 0 0
\(941\) 6.59067 0.214850 0.107425 0.994213i \(-0.465739\pi\)
0.107425 + 0.994213i \(0.465739\pi\)
\(942\) 0 0
\(943\) 9.40482i 0.306263i
\(944\) 0 0
\(945\) 3.88768 30.2843i 0.126466 0.985150i
\(946\) 0 0
\(947\) 28.7413i 0.933965i 0.884267 + 0.466983i \(0.154659\pi\)
−0.884267 + 0.466983i \(0.845341\pi\)
\(948\) 0 0
\(949\) −28.8579 −0.936768
\(950\) 0 0
\(951\) −9.11179 13.0435i −0.295470 0.422965i
\(952\) 0 0
\(953\) 18.2616i 0.591550i 0.955258 + 0.295775i \(0.0955778\pi\)
−0.955258 + 0.295775i \(0.904422\pi\)
\(954\) 0 0
\(955\) −11.5718 6.68098i −0.374455 0.216191i
\(956\) 0 0
\(957\) −11.6241 + 8.12024i −0.375754 + 0.262490i
\(958\) 0 0
\(959\) 1.74718 + 2.24645i 0.0564194 + 0.0725417i
\(960\) 0 0
\(961\) −32.2075 −1.03895
\(962\) 0 0
\(963\) −0.341423 1.96155i −0.0110022 0.0632101i
\(964\) 0 0
\(965\) 6.41889 11.1178i 0.206631 0.357896i
\(966\) 0 0
\(967\) 12.5899 + 21.8064i 0.404865 + 0.701247i 0.994306 0.106565i \(-0.0339851\pi\)
−0.589441 + 0.807812i \(0.700652\pi\)
\(968\) 0 0
\(969\) −25.9525 37.1509i −0.833714 1.19346i
\(970\) 0 0
\(971\) 23.7214 + 41.0866i 0.761255 + 1.31853i 0.942204 + 0.335040i \(0.108750\pi\)
−0.180949 + 0.983492i \(0.557917\pi\)
\(972\) 0 0
\(973\) −10.9117 14.0298i −0.349812 0.449774i
\(974\) 0 0
\(975\) 0.419767 0.0362593i 0.0134433 0.00116123i
\(976\) 0 0
\(977\) 55.3422i 1.77055i −0.465064 0.885277i \(-0.653969\pi\)
0.465064 0.885277i \(-0.346031\pi\)
\(978\) 0 0
\(979\) 3.56429 + 2.05784i 0.113915 + 0.0657690i
\(980\) 0 0
\(981\) 30.9049 + 36.9961i 0.986717 + 1.18120i
\(982\) 0 0
\(983\) −12.6750 21.9537i −0.404268 0.700213i 0.589968 0.807427i \(-0.299140\pi\)
−0.994236 + 0.107214i \(0.965807\pi\)
\(984\) 0 0
\(985\) −15.2977 8.83216i −0.487427 0.281416i
\(986\) 0 0
\(987\) 26.5629 + 28.6744i 0.845508 + 0.912716i
\(988\) 0 0
\(989\) −9.10404 + 5.25622i −0.289492 + 0.167138i
\(990\) 0 0
\(991\) −12.9683 + 22.4618i −0.411953 + 0.713523i −0.995103 0.0988413i \(-0.968486\pi\)
0.583151 + 0.812364i \(0.301820\pi\)
\(992\) 0 0
\(993\) −36.5196 + 25.5114i −1.15891 + 0.809580i
\(994\) 0 0
\(995\) 34.4753 19.9043i 1.09294 0.631010i
\(996\) 0 0
\(997\) −13.7943 + 7.96414i −0.436869 + 0.252227i −0.702269 0.711912i \(-0.747830\pi\)
0.265399 + 0.964139i \(0.414496\pi\)
\(998\) 0 0
\(999\) 40.8706 40.6015i 1.29309 1.28457i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bs.a.353.5 yes 48
3.2 odd 2 1512.2.bs.a.521.20 48
4.3 odd 2 1008.2.ca.e.353.20 48
7.5 odd 6 504.2.cx.a.425.13 yes 48
9.4 even 3 1512.2.cx.a.17.20 48
9.5 odd 6 504.2.cx.a.185.13 yes 48
12.11 even 2 3024.2.ca.e.2033.20 48
21.5 even 6 1512.2.cx.a.89.20 48
28.19 even 6 1008.2.df.e.929.12 48
36.23 even 6 1008.2.df.e.689.12 48
36.31 odd 6 3024.2.df.e.17.20 48
63.5 even 6 inner 504.2.bs.a.257.5 48
63.40 odd 6 1512.2.bs.a.1097.20 48
84.47 odd 6 3024.2.df.e.1601.20 48
252.103 even 6 3024.2.ca.e.2609.20 48
252.131 odd 6 1008.2.ca.e.257.20 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.5 48 63.5 even 6 inner
504.2.bs.a.353.5 yes 48 1.1 even 1 trivial
504.2.cx.a.185.13 yes 48 9.5 odd 6
504.2.cx.a.425.13 yes 48 7.5 odd 6
1008.2.ca.e.257.20 48 252.131 odd 6
1008.2.ca.e.353.20 48 4.3 odd 2
1008.2.df.e.689.12 48 36.23 even 6
1008.2.df.e.929.12 48 28.19 even 6
1512.2.bs.a.521.20 48 3.2 odd 2
1512.2.bs.a.1097.20 48 63.40 odd 6
1512.2.cx.a.17.20 48 9.4 even 3
1512.2.cx.a.89.20 48 21.5 even 6
3024.2.ca.e.2033.20 48 12.11 even 2
3024.2.ca.e.2609.20 48 252.103 even 6
3024.2.df.e.17.20 48 36.31 odd 6
3024.2.df.e.1601.20 48 84.47 odd 6