L(s) = 1 | + (−1.41 + 0.991i)3-s + (−1.11 + 1.92i)5-s + (0.362 + 2.62i)7-s + (1.03 − 2.81i)9-s + (−1.01 + 0.586i)11-s + (−3.12 + 1.80i)13-s + (−0.331 − 3.83i)15-s + (3.71 − 6.42i)17-s + (−3.05 + 1.76i)19-s + (−3.11 − 3.36i)21-s + (−5.03 − 2.90i)23-s + (0.0337 + 0.0583i)25-s + (1.32 + 5.02i)27-s + (−6.04 − 3.48i)29-s + 7.95i·31-s + ⋯ |
L(s) = 1 | + (−0.819 + 0.572i)3-s + (−0.496 + 0.860i)5-s + (0.136 + 0.990i)7-s + (0.344 − 0.938i)9-s + (−0.306 + 0.176i)11-s + (−0.866 + 0.500i)13-s + (−0.0854 − 0.989i)15-s + (0.900 − 1.55i)17-s + (−0.700 + 0.404i)19-s + (−0.679 − 0.733i)21-s + (−1.04 − 0.605i)23-s + (0.00674 + 0.0116i)25-s + (0.255 + 0.966i)27-s + (−1.12 − 0.648i)29-s + 1.42i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0512752 - 0.389208i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0512752 - 0.389208i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.41 - 0.991i)T \) |
| 7 | \( 1 + (-0.362 - 2.62i)T \) |
good | 5 | \( 1 + (1.11 - 1.92i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.01 - 0.586i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.12 - 1.80i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.71 + 6.42i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.05 - 1.76i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (5.03 + 2.90i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (6.04 + 3.48i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.95iT - 31T^{2} \) |
| 37 | \( 1 + (5.54 + 9.60i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.809 - 1.40i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.904 + 1.56i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8.52T + 47T^{2} \) |
| 53 | \( 1 + (-9.62 - 5.55i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 4.00T + 59T^{2} \) |
| 61 | \( 1 - 8.18iT - 61T^{2} \) |
| 67 | \( 1 - 9.92T + 67T^{2} \) |
| 71 | \( 1 - 3.67iT - 71T^{2} \) |
| 73 | \( 1 + (-6.92 - 3.99i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 4.51T + 79T^{2} \) |
| 83 | \( 1 + (-0.390 + 0.677i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.75 + 3.03i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.49 - 2.01i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47907102564109765728041364121, −10.54392609690970209375443862453, −9.792118300016561274157851954611, −8.928096938604685314846550852511, −7.59339387681327870444132687387, −6.82549405194613873974222925851, −5.70285928529325936482408111862, −4.91884363869074627918578950004, −3.68532244449733039673481405920, −2.41618736294908365488516080343,
0.25342730393664877555357023022, 1.70329776522526929441333534325, 3.77584742977973320943112554736, 4.78924644505109242873787972557, 5.68633134125071693423970680629, 6.79324257573727326280582999178, 7.926028151266858949809073399011, 8.137175637278374949795956546738, 9.823783149680721910669047828300, 10.51199333753332990418412270767