L(s) = 1 | + (−0.149 + 1.72i)3-s − 2.22·5-s + (2.45 + 0.996i)7-s + (−2.95 − 0.514i)9-s − 1.17i·11-s + (3.12 + 1.80i)13-s + (0.331 − 3.83i)15-s + (−3.71 + 6.42i)17-s + (3.05 − 1.76i)19-s + (−2.08 + 4.08i)21-s + 5.81i·23-s − 0.0674·25-s + (1.32 − 5.02i)27-s + (−6.04 + 3.48i)29-s + (−6.88 + 3.97i)31-s + ⋯ |
L(s) = 1 | + (−0.0860 + 0.996i)3-s − 0.993·5-s + (0.926 + 0.376i)7-s + (−0.985 − 0.171i)9-s − 0.353i·11-s + (0.866 + 0.500i)13-s + (0.0854 − 0.989i)15-s + (−0.900 + 1.55i)17-s + (0.700 − 0.404i)19-s + (−0.454 + 0.890i)21-s + 1.21i·23-s − 0.0134·25-s + (0.255 − 0.966i)27-s + (−1.12 + 0.648i)29-s + (−1.23 + 0.713i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 - 0.254i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.967 - 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8575144937\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8575144937\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.149 - 1.72i)T \) |
| 7 | \( 1 + (-2.45 - 0.996i)T \) |
good | 5 | \( 1 + 2.22T + 5T^{2} \) |
| 11 | \( 1 + 1.17iT - 11T^{2} \) |
| 13 | \( 1 + (-3.12 - 1.80i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.71 - 6.42i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.05 + 1.76i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 5.81iT - 23T^{2} \) |
| 29 | \( 1 + (6.04 - 3.48i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.88 - 3.97i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.54 + 9.60i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.809 - 1.40i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.904 + 1.56i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.26 + 7.38i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (9.62 + 5.55i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.00 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.09 + 4.09i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.96 - 8.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.67iT - 71T^{2} \) |
| 73 | \( 1 + (-6.92 - 3.99i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.25 - 3.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.390 - 0.677i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.75 - 3.03i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.49 - 2.01i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66832264223330610311975015113, −9.286402386180649825666546817746, −8.755793441910081516165906911000, −8.086737754789827060361832439106, −7.08645930719833581656914683178, −5.78184991957245559056577932193, −5.13986233287009127761284949775, −3.87579068122420486445150306842, −3.65120603330962493216221761790, −1.81692451824457066164775895546,
0.39613130475574683293804641822, 1.76701011278852526966110454673, 3.10105074410835911401567530962, 4.29109045221339311919326568907, 5.21213891544255378363613797361, 6.32640795174465166069615511906, 7.34819291724109941452656854310, 7.73655689834967120619773417085, 8.471606647939042867298184155170, 9.407201151394948723485035422465