L(s) = 1 | − 2·3-s − 3·9-s − 6·13-s − 4·16-s − 4·17-s − 2·23-s + 14·27-s + 10·29-s + 12·39-s − 22·43-s + 8·48-s + 10·49-s + 8·51-s + 18·53-s + 14·61-s + 4·69-s − 10·79-s − 4·81-s − 20·87-s + 14·101-s − 2·103-s + 26·107-s − 2·113-s + 18·117-s + 22·121-s + 127-s + 44·129-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 9-s − 1.66·13-s − 16-s − 0.970·17-s − 0.417·23-s + 2.69·27-s + 1.85·29-s + 1.92·39-s − 3.35·43-s + 1.15·48-s + 10/7·49-s + 1.12·51-s + 2.47·53-s + 1.79·61-s + 0.481·69-s − 1.12·79-s − 4/9·81-s − 2.14·87-s + 1.39·101-s − 0.197·103-s + 2.51·107-s − 0.188·113-s + 1.66·117-s + 2·121-s + 0.0887·127-s + 3.87·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4384904774\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4384904774\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.93176266694298933058460370640, −11.51797952032722027855627646741, −11.08018920854494500666756217377, −10.36184021706980554193114109300, −10.19355003038935935112000501799, −9.703465973113253747598113452150, −8.867745395695592108036724025108, −8.442749595770913852285471177392, −8.426577148881573092317124951724, −7.20569607189996205962244713118, −7.02886080438866008384258629381, −6.47250326800870221202037188489, −5.96843779068964231574949881864, −5.37167074814700313175886168848, −4.76194707141289287292046691991, −4.68951004590417022965209666797, −3.56889414762037624882687025841, −2.61406413337654857103539023048, −2.27880256373408315256147343358, −0.48137645504867270155404486414,
0.48137645504867270155404486414, 2.27880256373408315256147343358, 2.61406413337654857103539023048, 3.56889414762037624882687025841, 4.68951004590417022965209666797, 4.76194707141289287292046691991, 5.37167074814700313175886168848, 5.96843779068964231574949881864, 6.47250326800870221202037188489, 7.02886080438866008384258629381, 7.20569607189996205962244713118, 8.426577148881573092317124951724, 8.442749595770913852285471177392, 8.867745395695592108036724025108, 9.703465973113253747598113452150, 10.19355003038935935112000501799, 10.36184021706980554193114109300, 11.08018920854494500666756217377, 11.51797952032722027855627646741, 11.93176266694298933058460370640