Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 5 x + 79 x^{2} )^{2}$ |
$1 + 10 x + 183 x^{2} + 790 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.590756304637$, $\pm0.590756304637$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7225$ | $40640625$ | $242044320400$ | $1516703288765625$ | $9468951668564130625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $6508$ | $490920$ | $38939668$ | $3077275950$ | $243087180478$ | $19203893016930$ | $1517108911481188$ | $119851596736314360$ | $9468276070833971548$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=46 x^6+58 x^5+23 x^4+39 x^3+23 x^2+58 x+46$
- $y^2=59 x^6+32 x^5+30 x^4+63 x^3+56 x^2+26 x+27$
- $y^2=4 x^6+71 x^5+35 x^4+40 x^3+39 x^2+31 x+11$
- $y^2=61 x^6+63 x^5+11 x^4+6 x^3+3 x^2+56 x+75$
- $y^2=65 x^6+30 x^5+21 x^4+74 x^3+76 x^2+41 x+3$
- $y^2=4 x^6+15 x^5+77 x^4+59 x^3+77 x^2+15 x+4$
- $y^2=70 x^6+43 x^5+57 x^4+4 x^3+14 x^2+21 x+57$
- $y^2=71 x^6+23 x^5+73 x^4+59 x^3+73 x^2+23 x+71$
- $y^2=23 x^6+74 x^5+x^4+36 x^3+x^2+74 x+23$
- $y^2=59 x^6+48 x^5+53 x^4+66 x^3+53 x^2+48 x+59$
- $y^2=10 x^6+52 x^5+19 x^4+20 x^3+25 x^2+49 x+40$
- $y^2=76 x^6+66 x^5+64 x^4+3 x^3+61 x^2+68 x+22$
- $y^2=10 x^6+59 x^5+55 x^4+55 x^3+55 x^2+59 x+10$
- $y^2=46 x^6+22 x^5+8 x^4+10 x^3+50 x^2+63 x+40$
- $y^2=20 x^6+34 x^5+68 x^4+53 x^3+38 x^2+21 x+54$
- $y^2=58 x^6+5 x^5+52 x^4+29 x^3+53 x^2+73 x+47$
- $y^2=38 x^6+x^5+34 x^4+30 x^3+69 x^2+6 x+36$
- $y^2=8 x^6+51 x^5+44 x^4+26 x^3+69 x^2+6 x+9$
- $y^2=35 x^6+37 x^5+48 x^4+66 x^3+48 x^2+37 x+35$
- $y^2=63 x^6+37 x^5+60 x^4+36 x^3+33 x^2+55 x+44$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-291}) \)$)$ |
Base change
This is a primitive isogeny class.