Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 7 x + 61 x^{2} )^{2}$ |
| $1 - 14 x + 171 x^{2} - 854 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.352090495177$, $\pm0.352090495177$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $40$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $5, 11$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3025$ | $14402025$ | $51947526400$ | $191765857682025$ | $713271247777515625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $3868$ | $228858$ | $13850068$ | $844511448$ | $51519522598$ | $3142742049768$ | $191707359451108$ | $11694146465972418$ | $713342911441167148$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=22 x^6+28 x^5+29 x^4+26 x^3+33 x^2+10 x+45$
- $y^2=10 x^6+38 x^5+21 x^4+44 x^3+46 x^2+6 x+4$
- $y^2=7 x^6+6 x^5+23 x^4+50 x^3+55 x^2+8 x+35$
- $y^2=22 x^6+51 x^5+30 x^4+56 x^3+52 x^2+32 x+20$
- $y^2=60 x^6+35 x^5+21 x^4+56 x^3+18 x^2+17 x+20$
- $y^2=35 x^6+34 x^5+31 x^4+6 x^2+16 x+18$
- $y^2=13 x^6+45 x^5+36 x^4+22 x^3+27 x^2+52 x+56$
- $y^2=2 x^6+2 x^3+7$
- $y^2=44 x^6+50 x^5+22 x^4+34 x^3+14 x^2+28 x+1$
- $y^2=33 x^6+4 x^5+37 x^4+20 x^3+24 x^2+4 x+28$
- $y^2=50 x^6+35 x^5+54 x^4+14 x^3+46 x^2+15 x+59$
- $y^2=5 x^6+28 x^5+43 x^4+44 x^3+59 x^2+17 x+6$
- $y^2=23 x^6+30 x^5+7 x^4+26 x^3+29 x^2+2 x+11$
- $y^2=2 x^6+33 x^5+32 x^4+2 x^2+18 x+7$
- $y^2=26 x^6+34 x^5+28 x^4+8 x^3+11 x^2+58 x+51$
- $y^2=23 x^6+20 x^5+4 x^4+52 x^3+51 x^2+43 x+9$
- $y^2=49 x^6+20 x^5+25 x^4+53 x^3+5 x^2+13 x+57$
- $y^2=48 x^6+29 x^5+56 x^4+37 x^3+22 x^2+10 x+5$
- $y^2=30 x^6+33 x^5+48 x^4+36 x^3+x^2+2 x+31$
- $y^2=48 x^6+54 x^5+10 x^4+3 x^3+52 x^2+28 x+25$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.ah 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.