L(s) = 1 | + 2·3-s + 9-s − 4·11-s − 4·13-s − 8·23-s − 6·25-s − 4·27-s − 8·33-s − 20·37-s − 8·39-s + 16·47-s + 2·49-s + 28·59-s − 4·61-s − 16·69-s − 24·71-s + 28·73-s − 12·75-s − 11·81-s − 12·83-s − 4·97-s − 4·99-s − 4·107-s + 12·109-s − 40·111-s − 4·117-s − 10·121-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/3·9-s − 1.20·11-s − 1.10·13-s − 1.66·23-s − 6/5·25-s − 0.769·27-s − 1.39·33-s − 3.28·37-s − 1.28·39-s + 2.33·47-s + 2/7·49-s + 3.64·59-s − 0.512·61-s − 1.92·69-s − 2.84·71-s + 3.27·73-s − 1.38·75-s − 1.22·81-s − 1.31·83-s − 0.406·97-s − 0.402·99-s − 0.386·107-s + 1.14·109-s − 3.79·111-s − 0.369·117-s − 0.909·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.759776534720553396196404795081, −8.728992519223720851294830795286, −8.098681382024412731658064042949, −7.62957697295837367057177448880, −7.33738117792255002879146989083, −6.80509880453900742773724680138, −5.94298026933117547539540451748, −5.37965797861855942151102168788, −5.16542238567969836254694300670, −3.98566652809305192679300882554, −3.91058908136761919842529082491, −2.97266024838274409285785943283, −2.30676446591740616355718333113, −1.98277685475006180754048515240, 0,
1.98277685475006180754048515240, 2.30676446591740616355718333113, 2.97266024838274409285785943283, 3.91058908136761919842529082491, 3.98566652809305192679300882554, 5.16542238567969836254694300670, 5.37965797861855942151102168788, 5.94298026933117547539540451748, 6.80509880453900742773724680138, 7.33738117792255002879146989083, 7.62957697295837367057177448880, 8.098681382024412731658064042949, 8.728992519223720851294830795286, 8.759776534720553396196404795081