Properties

Label 2-9920-1.1-c1-0-212
Degree $2$
Conductor $9920$
Sign $-1$
Analytic cond. $79.2115$
Root an. cond. $8.90008$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s − 4·7-s + 9-s + 4·11-s + 2·15-s − 8·17-s + 4·19-s − 8·21-s − 2·23-s + 25-s − 4·27-s + 6·29-s − 31-s + 8·33-s − 4·35-s + 4·37-s − 6·41-s − 6·43-s + 45-s − 8·47-s + 9·49-s − 16·51-s + 12·53-s + 4·55-s + 8·57-s − 4·59-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s + 0.516·15-s − 1.94·17-s + 0.917·19-s − 1.74·21-s − 0.417·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s − 0.179·31-s + 1.39·33-s − 0.676·35-s + 0.657·37-s − 0.937·41-s − 0.914·43-s + 0.149·45-s − 1.16·47-s + 9/7·49-s − 2.24·51-s + 1.64·53-s + 0.539·55-s + 1.05·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9920\)    =    \(2^{6} \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(79.2115\)
Root analytic conductor: \(8.90008\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
31 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.19855422477612201948548702665, −6.51064447517598676788754306998, −6.37222067633058161380817766785, −5.28257846977330367584587441679, −4.27016584088156394931593314622, −3.66475309536403829068260025084, −2.97064147358241148912227417411, −2.38790810230074948659508553086, −1.42247479066643426534898941044, 0, 1.42247479066643426534898941044, 2.38790810230074948659508553086, 2.97064147358241148912227417411, 3.66475309536403829068260025084, 4.27016584088156394931593314622, 5.28257846977330367584587441679, 6.37222067633058161380817766785, 6.51064447517598676788754306998, 7.19855422477612201948548702665

Graph of the $Z$-function along the critical line