L(s) = 1 | + 3-s + 5·5-s − 2·7-s − 4·9-s − 11-s + 5·15-s − 2·17-s − 19-s − 2·21-s + 4·23-s + 10·25-s − 6·27-s − 5·29-s − 2·31-s − 33-s − 10·35-s − 10·41-s − 3·43-s − 20·45-s − 6·47-s + 3·49-s − 2·51-s + 4·53-s − 5·55-s − 57-s − 10·59-s − 12·61-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 2.23·5-s − 0.755·7-s − 4/3·9-s − 0.301·11-s + 1.29·15-s − 0.485·17-s − 0.229·19-s − 0.436·21-s + 0.834·23-s + 2·25-s − 1.15·27-s − 0.928·29-s − 0.359·31-s − 0.174·33-s − 1.69·35-s − 1.56·41-s − 0.457·43-s − 2.98·45-s − 0.875·47-s + 3/7·49-s − 0.280·51-s + 0.549·53-s − 0.674·55-s − 0.132·57-s − 1.30·59-s − 1.53·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 89567296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89567296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.58113412484521511100125280469, −7.09067758253493938375293915227, −6.64333142870835793623114525545, −6.52748088050374198071114846120, −6.11888710956022647744871311248, −5.82283827035368104839948473153, −5.44728490804260760132908332222, −5.43176484771495933035614540294, −4.76553430838002997016891632023, −4.60492194738162249879632078574, −3.82804424819168501911569719782, −3.46432497588690018978431996770, −3.03824733364693295702465828944, −2.88713981860330029752294120556, −2.29749775324832457600724185752, −2.13050463280711677456050411415, −1.61112925864846247875673134891, −1.23839142555331160120258544757, 0, 0,
1.23839142555331160120258544757, 1.61112925864846247875673134891, 2.13050463280711677456050411415, 2.29749775324832457600724185752, 2.88713981860330029752294120556, 3.03824733364693295702465828944, 3.46432497588690018978431996770, 3.82804424819168501911569719782, 4.60492194738162249879632078574, 4.76553430838002997016891632023, 5.43176484771495933035614540294, 5.44728490804260760132908332222, 5.82283827035368104839948473153, 6.11888710956022647744871311248, 6.52748088050374198071114846120, 6.64333142870835793623114525545, 7.09067758253493938375293915227, 7.58113412484521511100125280469