Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 43 x^{2} + 62 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.399065759424$, $\pm0.663519173942$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.263225.1 |
Galois group: | $D_{4}$ |
Jacobians: | $52$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1069$ | $1005929$ | $885559600$ | $853189746569$ | $819488056569709$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $1044$ | $29728$ | $923844$ | $28624254$ | $887424798$ | $27513024034$ | $852893603844$ | $26439608999008$ | $819628253341204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=14 x^6+15 x^5+24 x^4+10 x^3+30 x^2+6 x+10$
- $y^2=16 x^6+18 x^5+11 x^4+25 x^3+30 x^2+30 x+20$
- $y^2=29 x^6+12 x^5+6 x^4+12 x^3+7 x^2+24 x+20$
- $y^2=30 x^6+15 x^5+x^4+21 x^3+27 x^2+8 x+29$
- $y^2=20 x^6+x^5+22 x^4+4 x^3+20 x^2+2 x+25$
- $y^2=25 x^6+29 x^5+16 x^4+2 x^3+9 x^2+17 x+1$
- $y^2=25 x^6+23 x^5+19 x^4+x^3+19 x^2+28 x+5$
- $y^2=20 x^6+25 x^5+12 x^4+8 x^3+26 x^2+24 x+3$
- $y^2=14 x^6+21 x^5+23 x^4+3 x^3+x^2+8 x+9$
- $y^2=20 x^6+18 x^5+27 x^4+22 x^3+13 x^2+24 x+3$
- $y^2=6 x^6+19 x^5+23 x^4+14 x^3+12 x^2+10 x+14$
- $y^2=10 x^6+6 x^5+10 x^4+11 x^3+29 x^2+15 x+25$
- $y^2=4 x^6+5 x^5+24 x^4+22 x^3+12 x^2+4 x+1$
- $y^2=24 x^6+19 x^5+28 x^4+2 x^3+6 x^2+24 x+27$
- $y^2=25 x^6+12 x^5+11 x^4+26 x^3+25 x^2+29 x+30$
- $y^2=28 x^6+25 x^5+28 x^4+11 x^3+27 x^2+27 x+23$
- $y^2=30 x^6+24 x^5+10 x^4+21 x^3+12 x^2+12 x+16$
- $y^2=8 x^6+16 x^5+28 x^4+26 x^3+20 x^2+6 x+11$
- $y^2=22 x^6+11 x^5+21 x^4+16 x^3+4 x^2+24 x+21$
- $y^2=6 x^6+24 x^4+8 x^3+14 x^2+x+23$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.263225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.ac_br | $2$ | (not in LMFDB) |