Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 17 x^{2} )^{2}$ |
$1 + 2 x + 35 x^{2} + 34 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.538695984895$, $\pm0.538695984895$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $361$ | $104329$ | $23658496$ | $6890826121$ | $2019863445961$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $356$ | $4814$ | $82500$ | $1422580$ | $24152222$ | $410277748$ | $6975569284$ | $118589100398$ | $2015995875236$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=9 x^6+9 x^5+2 x^4+5 x^3+5 x^2+15 x+15$
- $y^2=16 x^6+5 x^5+11 x^4+15 x^3+11 x^2+5 x+16$
- $y^2=11 x^6+6 x^3+2 x^2+4 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.