Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 15 x + 173 x^{2} - 1335 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.198221232497$, $\pm0.505504035313$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1077525.3 |
Galois group: | $D_{4}$ |
Jacobians: | $168$ |
Isomorphism classes: | 168 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6745$ | $63706525$ | $497268170905$ | $3936388019541525$ | $31182626235911008000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $75$ | $8043$ | $705375$ | $62739043$ | $5584221750$ | $496983861123$ | $44231337891375$ | $3936588648011683$ | $350356402969434675$ | $31181719929817072398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=17 x^6+41 x^5+73 x^4+48 x^3+11 x^2+x+42$
- $y^2=8 x^6+41 x^5+63 x^4+60 x^3+9 x^2+77 x+43$
- $y^2=76 x^6+46 x^5+82 x^4+46 x^2+76 x+69$
- $y^2=16 x^6+25 x^5+58 x^4+53 x^3+38 x^2+7 x+50$
- $y^2=54 x^6+77 x^5+17 x^4+14 x^3+44 x^2+16 x+27$
- $y^2=86 x^6+79 x^5+83 x^4+8 x^3+12 x^2+43 x+8$
- $y^2=45 x^6+78 x^5+21 x^4+22 x^3+67 x^2+42 x+38$
- $y^2=12 x^6+13 x^5+77 x^4+18 x^3+31 x^2+84 x+83$
- $y^2=58 x^6+71 x^5+46 x^4+69 x^3+45 x^2+51 x+86$
- $y^2=75 x^6+49 x^5+85 x^4+84 x^3+77 x^2+63 x+75$
- $y^2=37 x^6+66 x^5+59 x^4+57 x^3+11 x^2+58 x+43$
- $y^2=64 x^6+74 x^5+36 x^4+26 x^3+64 x^2+76 x+40$
- $y^2=39 x^6+81 x^5+43 x^4+46 x^3+39 x^2+43 x+18$
- $y^2=15 x^6+37 x^5+35 x^4+6 x^3+85 x^2+71 x+29$
- $y^2=86 x^6+52 x^5+51 x^4+16 x^3+58 x^2+66 x+87$
- $y^2=75 x^6+86 x^5+35 x^4+77 x^3+18 x^2+8 x+56$
- $y^2=10 x^6+56 x^5+41 x^4+13 x^3+6 x^2+26 x+7$
- $y^2=86 x^6+64 x^5+60 x^4+51 x^3+80 x^2+80 x+43$
- $y^2=76 x^6+7 x^5+62 x^4+60 x^3+x^2+6 x+35$
- $y^2=26 x^6+12 x^5+54 x^4+55 x^3+83 x^2+10 x+15$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.1077525.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.p_gr | $2$ | (not in LMFDB) |