Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 10 x + 123 x^{2} + 590 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.510939606603$, $\pm0.711483738265$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $124$ |
Isomorphism classes: | 124 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4205$ | $12636025$ | $41992071920$ | $146821525198025$ | $511116432926825125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $3628$ | $204460$ | $12116628$ | $714923850$ | $42180662998$ | $2488653882190$ | $146830400540388$ | $8662995819664180$ | $511116755984676348$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=54 x^6+26 x^5+5 x^4+50 x^3+21 x^2+9 x+46$
- $y^2=52 x^6+34 x^5+23 x^4+28 x^3+16 x^2+34 x+56$
- $y^2=7 x^6+51 x^5+44 x^4+51 x^3+33 x^2+57 x+14$
- $y^2=4 x^6+6 x^5+11 x^4+5 x^3+29 x^2+39 x+31$
- $y^2=56 x^6+44 x^5+32 x^4+7 x^3+12 x^2+19 x+4$
- $y^2=42 x^6+41 x^5+15 x^4+51 x^3+30 x^2+5 x+54$
- $y^2=4 x^6+48 x^5+49 x^4+14 x^2+30 x+49$
- $y^2=48 x^6+9 x^5+45 x^4+7 x^3+37 x^2+10 x+36$
- $y^2=5 x^6+20 x^5+12 x^4+47 x^3+6 x^2+49 x+19$
- $y^2=7 x^6+8 x^5+45 x^4+16 x^3+10 x^2+2 x+52$
- $y^2=19 x^6+3 x^5+43 x^4+18 x^3+21 x^2+20 x+42$
- $y^2=49 x^6+20 x^5+52 x^4+29 x^3+51 x^2+2 x+15$
- $y^2=5 x^6+12 x^5+57 x^4+22 x^3+41 x^2+57 x+53$
- $y^2=25 x^6+x^5+5 x^4+42 x^3+44 x^2+44 x+42$
- $y^2=36 x^6+27 x^5+31 x^4+5 x^3+23 x^2+50 x+46$
- $y^2=39 x^6+17 x^5+15 x^4+36 x^3+24 x^2+51 x+53$
- $y^2=4 x^6+3 x^5+52 x^4+14 x^3+29 x^2+44 x+23$
- $y^2=29 x^6+31 x^5+42 x^4+42 x^3+57 x^2+2 x+43$
- $y^2=40 x^6+51 x^5+46 x^4+10 x^3+58 x^2+20 x+57$
- $y^2=13 x^6+16 x^5+20 x^4+48 x^3+40 x^2+58 x+52$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.1025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ak_et | $2$ | (not in LMFDB) |