Properties

Label 2-9464-1.1-c1-0-229
Degree $2$
Conductor $9464$
Sign $-1$
Analytic cond. $75.5704$
Root an. cond. $8.69312$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 7-s + 9-s + 2·11-s + 2·15-s − 3·17-s − 8·19-s + 2·21-s + 6·23-s − 4·25-s − 4·27-s − 9·29-s − 6·31-s + 4·33-s + 35-s + 3·37-s − 3·41-s − 2·43-s + 45-s − 12·47-s + 49-s − 6·51-s − 5·53-s + 2·55-s − 16·57-s − 14·59-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.603·11-s + 0.516·15-s − 0.727·17-s − 1.83·19-s + 0.436·21-s + 1.25·23-s − 4/5·25-s − 0.769·27-s − 1.67·29-s − 1.07·31-s + 0.696·33-s + 0.169·35-s + 0.493·37-s − 0.468·41-s − 0.304·43-s + 0.149·45-s − 1.75·47-s + 1/7·49-s − 0.840·51-s − 0.686·53-s + 0.269·55-s − 2.11·57-s − 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9464\)    =    \(2^{3} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(75.5704\)
Root analytic conductor: \(8.69312\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58317621110154684086312461226, −6.63054341853485842598907948149, −6.16877732005839014787967296401, −5.22145286760892230184596343896, −4.44167050893745904133587596855, −3.72362909357795053617479780648, −3.04211303950355410822456397532, −1.92540472733853759399881368346, −1.82427496262827446013758055637, 0, 1.82427496262827446013758055637, 1.92540472733853759399881368346, 3.04211303950355410822456397532, 3.72362909357795053617479780648, 4.44167050893745904133587596855, 5.22145286760892230184596343896, 6.16877732005839014787967296401, 6.63054341853485842598907948149, 7.58317621110154684086312461226

Graph of the $Z$-function along the critical line