L(s) = 1 | + 2·3-s − 4-s + 2·5-s − 4·7-s + 6·11-s − 2·12-s + 4·15-s − 3·16-s + 2·19-s − 2·20-s − 8·21-s + 6·23-s + 3·25-s − 2·27-s + 4·28-s − 12·29-s − 10·31-s + 12·33-s − 8·35-s + 8·37-s + 10·43-s − 6·44-s − 12·47-s − 6·48-s − 2·49-s + 12·55-s + 4·57-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s + 0.894·5-s − 1.51·7-s + 1.80·11-s − 0.577·12-s + 1.03·15-s − 3/4·16-s + 0.458·19-s − 0.447·20-s − 1.74·21-s + 1.25·23-s + 3/5·25-s − 0.384·27-s + 0.755·28-s − 2.22·29-s − 1.79·31-s + 2.08·33-s − 1.35·35-s + 1.31·37-s + 1.52·43-s − 0.904·44-s − 1.75·47-s − 0.866·48-s − 2/7·49-s + 1.61·55-s + 0.529·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.526233200\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.526233200\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.928623450692665846012042566051, −9.804255308650575402490660463028, −9.415849134480595536132715547200, −9.180506015945554642003228424302, −8.887225643326998679649085215482, −8.705903813127830158769042037016, −7.81884854997300313008022268477, −7.46185351023504673670762954925, −6.81816797969766121577000051320, −6.66640281247935516679368286505, −6.03255528736792553513960384729, −5.75652089371752660746428406732, −5.05886021189905239270894164588, −4.52562817767662100232848733866, −3.65059913020362126207314055427, −3.57336729733123206830438464359, −3.10892688779358743516607554304, −2.26526449119312504336081390871, −1.85773614721349459986607109893, −0.73029408476278882416789874489,
0.73029408476278882416789874489, 1.85773614721349459986607109893, 2.26526449119312504336081390871, 3.10892688779358743516607554304, 3.57336729733123206830438464359, 3.65059913020362126207314055427, 4.52562817767662100232848733866, 5.05886021189905239270894164588, 5.75652089371752660746428406732, 6.03255528736792553513960384729, 6.66640281247935516679368286505, 6.81816797969766121577000051320, 7.46185351023504673670762954925, 7.81884854997300313008022268477, 8.705903813127830158769042037016, 8.887225643326998679649085215482, 9.180506015945554642003228424302, 9.415849134480595536132715547200, 9.804255308650575402490660463028, 9.928623450692665846012042566051