L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 4·9-s + 5·16-s − 8·18-s − 10·25-s + 16·31-s − 6·32-s + 12·36-s + 16·37-s − 6·41-s − 8·43-s − 4·49-s + 20·50-s − 24·59-s + 4·61-s − 32·62-s + 7·64-s − 16·72-s − 8·73-s − 32·74-s + 7·81-s + 12·82-s + 24·83-s + 16·86-s + 8·98-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 4/3·9-s + 5/4·16-s − 1.88·18-s − 2·25-s + 2.87·31-s − 1.06·32-s + 2·36-s + 2.63·37-s − 0.937·41-s − 1.21·43-s − 4/7·49-s + 2.82·50-s − 3.12·59-s + 0.512·61-s − 4.06·62-s + 7/8·64-s − 1.88·72-s − 0.936·73-s − 3.71·74-s + 7/9·81-s + 1.32·82-s + 2.63·83-s + 1.72·86-s + 0.808·98-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6724 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6724 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5332554831\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5332554831\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.04125845260439248814778886338, −13.99099649675383920407175138354, −13.46203202579228341404552085428, −13.05546580731004234433260748138, −12.04233198463357823386335406128, −11.98075634686149634766223001848, −11.24693991564168238771013131117, −10.57895286184314210273779158945, −9.955900386555452119830042268101, −9.745882746813284949042619037994, −9.231876366086698723292105083584, −8.160726857578117042551346737256, −7.979709927964138581800897823776, −7.37453055558091235534647520739, −6.36239357201780679996803335740, −6.28302350935325781901961139120, −4.86979712975079139223570549762, −4.03604900400171253358567908044, −2.74281168846530704326542133326, −1.47997097453131561975038860063,
1.47997097453131561975038860063, 2.74281168846530704326542133326, 4.03604900400171253358567908044, 4.86979712975079139223570549762, 6.28302350935325781901961139120, 6.36239357201780679996803335740, 7.37453055558091235534647520739, 7.979709927964138581800897823776, 8.160726857578117042551346737256, 9.231876366086698723292105083584, 9.745882746813284949042619037994, 9.955900386555452119830042268101, 10.57895286184314210273779158945, 11.24693991564168238771013131117, 11.98075634686149634766223001848, 12.04233198463357823386335406128, 13.05546580731004234433260748138, 13.46203202579228341404552085428, 13.99099649675383920407175138354, 15.04125845260439248814778886338