L(s) = 1 | + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s + 2·11-s − 13-s + 14-s + 16-s + 4·17-s − 4·19-s − 20-s + 2·22-s − 8·23-s + 25-s − 26-s + 28-s − 4·29-s − 8·31-s + 32-s + 4·34-s − 35-s − 8·37-s − 4·38-s − 40-s − 6·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s + 0.603·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.970·17-s − 0.917·19-s − 0.223·20-s + 0.426·22-s − 1.66·23-s + 1/5·25-s − 0.196·26-s + 0.188·28-s − 0.742·29-s − 1.43·31-s + 0.176·32-s + 0.685·34-s − 0.169·35-s − 1.31·37-s − 0.648·38-s − 0.158·40-s − 0.937·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 + T \) | |
| 7 | \( 1 - T \) | |
| 13 | \( 1 + T \) | |
good | 11 | \( 1 - 2 T + p T^{2} \) | 1.11.ac |
| 17 | \( 1 - 4 T + p T^{2} \) | 1.17.ae |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e |
| 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i |
| 29 | \( 1 + 4 T + p T^{2} \) | 1.29.e |
| 31 | \( 1 + 8 T + p T^{2} \) | 1.31.i |
| 37 | \( 1 + 8 T + p T^{2} \) | 1.37.i |
| 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g |
| 43 | \( 1 - 6 T + p T^{2} \) | 1.43.ag |
| 47 | \( 1 + 2 T + p T^{2} \) | 1.47.c |
| 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c |
| 59 | \( 1 + p T^{2} \) | 1.59.a |
| 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak |
| 67 | \( 1 + 16 T + p T^{2} \) | 1.67.q |
| 71 | \( 1 + 6 T + p T^{2} \) | 1.71.g |
| 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c |
| 79 | \( 1 - 4 T + p T^{2} \) | 1.79.ae |
| 83 | \( 1 - 2 T + p T^{2} \) | 1.83.ac |
| 89 | \( 1 - 10 T + p T^{2} \) | 1.89.ak |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.44464856089675843831225212924, −6.76483528450451025103011279485, −5.94719772105327309276646764340, −5.40974344015418906527021023706, −4.56191165678616861183550282078, −3.86249674902658360054436017665, −3.40126970409416262990471876307, −2.19806734371017197693287977481, −1.52787083383998060085246819537, 0,
1.52787083383998060085246819537, 2.19806734371017197693287977481, 3.40126970409416262990471876307, 3.86249674902658360054436017665, 4.56191165678616861183550282078, 5.40974344015418906527021023706, 5.94719772105327309276646764340, 6.76483528450451025103011279485, 7.44464856089675843831225212924