L(s) = 1 | − 2-s − 5-s − 2·7-s + 8-s + 10-s + 3·11-s + 13-s + 2·14-s − 16-s − 6·17-s + 16·19-s − 3·22-s − 3·23-s − 26-s + 9·29-s + 7·31-s + 6·34-s + 2·35-s + 4·37-s − 16·38-s − 40-s + 12·41-s + 7·43-s + 3·46-s + 3·47-s + 7·49-s + 24·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.447·5-s − 0.755·7-s + 0.353·8-s + 0.316·10-s + 0.904·11-s + 0.277·13-s + 0.534·14-s − 1/4·16-s − 1.45·17-s + 3.67·19-s − 0.639·22-s − 0.625·23-s − 0.196·26-s + 1.67·29-s + 1.25·31-s + 1.02·34-s + 0.338·35-s + 0.657·37-s − 2.59·38-s − 0.158·40-s + 1.87·41-s + 1.06·43-s + 0.442·46-s + 0.437·47-s + 49-s + 3.29·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.394376094\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.394376094\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17297224337387944583118350149, −9.990634363479202083667062425642, −9.552780408871169317454322629247, −9.306865214777139839220019479738, −8.697107750584296579505238978685, −8.585645933276690622305387548347, −7.890592410807507198691274491193, −7.42023217773605918643018096829, −7.15535967948534835124042403873, −6.74762953638679872810675554586, −6.04101124331333420337436293070, −5.82591596801831856822875050826, −5.12936244684128544566725225580, −4.49649915728998358895675388480, −4.02248190083149546310194743341, −3.64841607276553205978961270785, −2.69559313048512516788048661835, −2.58986031721244231019437286714, −1.04524584204665034845517802725, −0.907464480540244072509983894920,
0.907464480540244072509983894920, 1.04524584204665034845517802725, 2.58986031721244231019437286714, 2.69559313048512516788048661835, 3.64841607276553205978961270785, 4.02248190083149546310194743341, 4.49649915728998358895675388480, 5.12936244684128544566725225580, 5.82591596801831856822875050826, 6.04101124331333420337436293070, 6.74762953638679872810675554586, 7.15535967948534835124042403873, 7.42023217773605918643018096829, 7.890592410807507198691274491193, 8.585645933276690622305387548347, 8.697107750584296579505238978685, 9.306865214777139839220019479738, 9.552780408871169317454322629247, 9.990634363479202083667062425642, 10.17297224337387944583118350149