Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 52 x^{2} - 261 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.148229962000$, $\pm0.518436704667$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-35})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $62$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $624$ | $726336$ | $592240896$ | $499431538944$ | $420888014165424$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $21$ | $865$ | $24282$ | $706129$ | $20519961$ | $594915046$ | $17250033549$ | $500246327809$ | $14507153562978$ | $420707269911625$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=x^6+9 x^5+19 x^4+23 x^3+16 x^2+9 x+27$
- $y^2=2 x^6+9 x^5+24 x^4+3 x^3+4 x^2+12 x+7$
- $y^2=14 x^6+19 x^5+8 x^4+27 x^3+26 x^2+13 x+13$
- $y^2=19 x^6+11 x^5+19 x^4+6 x^3+10 x^2+6 x+2$
- $y^2=28 x^6+10 x^5+3 x^4+21 x^3+2 x^2+26 x+5$
- $y^2=28 x^6+14 x^5+9 x^4+26 x^3+8 x^2+4 x+15$
- $y^2=15 x^6+15 x^5+24 x^4+25 x^3+7 x^2+3 x+24$
- $y^2=11 x^6+7 x^5+13 x^4+14 x^3+27 x^2+x+11$
- $y^2=27 x^6+6 x^5+17 x^4+13 x^3+15 x^2+11 x+27$
- $y^2=27 x^6+19 x^5+27 x^4+14 x^3+18 x^2+25 x+25$
- $y^2=11 x^6+3 x^5+3 x^4+2 x^3+11 x+26$
- $y^2=24 x^6+14 x^5+8 x^4+18 x^3+4 x^2+9 x+20$
- $y^2=18 x^6+x^5+13 x^4+22 x^3+28 x^2+27 x+9$
- $y^2=14 x^6+4 x^5+23 x^4+26 x^3+20 x^2+14 x+12$
- $y^2=19 x^6+22 x^5+15 x^4+23 x^3+23 x^2+14 x+14$
- $y^2=x^6+6 x^5+17 x^4+16 x^3+16 x^2+10 x+19$
- $y^2=18 x^6+13 x^5+14 x^4+6 x^3+10 x^2+12 x+28$
- $y^2=7 x^6+22 x^5+x^4+x^3+24 x^2+12 x+12$
- $y^2=9 x^6+2 x^5+22 x^4+17 x^3+28 x^2+11 x+15$
- $y^2=19 x^6+6 x^5+9 x^4+x^3+24 x^2+6 x+25$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{3}}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-35})\). |
| The base change of $A$ to $\F_{29^{3}}$ is 1.24389.acc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-35}) \)$)$ |
Base change
This is a primitive isogeny class.