Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 18 x + 241 x^{2} + 1494 x^{3} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.617054767578$, $\pm0.716278565755$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $81$ |
| Isomorphism classes: | 41 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8643$ | $48565017$ | $325399511844$ | $2252823178597209$ | $15516392939692373523$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $102$ | $7048$ | $569088$ | $47469508$ | $3939129942$ | $326939015518$ | $27136055798562$ | $2252292262348996$ | $186940254978265104$ | $15516041187301904968$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 81 curves (of which all are hyperelliptic):
- $y^2=47 x^6+60 x^5+4 x^4+36 x^3+47 x^2+27 x+58$
- $y^2=81 x^6+54 x^5+62 x^4+18 x^3+73 x^2+73 x+31$
- $y^2=36 x^6+13 x^5+21 x^4+62 x^3+45 x^2+3 x+46$
- $y^2=82 x^6+32 x^5+2 x^4+x^3+59 x^2+8 x+52$
- $y^2=9 x^6+37 x^5+24 x^4+56 x^3+69 x^2+62 x+27$
- $y^2=35 x^6+7 x^5+32 x^4+28 x^3+35 x^2+25 x+70$
- $y^2=42 x^6+35 x^5+36 x^4+52 x^3+35 x^2+72 x+1$
- $y^2=79 x^6+43 x^5+20 x^4+77 x^3+52 x^2+13 x+70$
- $y^2=60 x^6+77 x^5+67 x^4+20 x^3+30 x^2+78 x+41$
- $y^2=60 x^6+33 x^5+6 x^4+80 x^3+2 x^2+56 x+51$
- $y^2=76 x^6+2 x^5+64 x^4+14 x^3+68 x^2+53 x+3$
- $y^2=60 x^6+80 x^5+60 x^4+52 x^3+65 x^2+47 x+43$
- $y^2=3 x^6+28 x^5+51 x^4+80 x^3+77 x^2+77 x+3$
- $y^2=29 x^6+5 x^5+61 x^4+70 x^3+34 x+56$
- $y^2=40 x^6+13 x^5+58 x^4+66 x^3+3 x^2+32 x+29$
- $y^2=68 x^6+51 x^5+49 x^4+79 x^3+60 x^2+10 x+60$
- $y^2=24 x^6+49 x^5+57 x^4+14 x^3+14 x^2+17 x+18$
- $y^2=35 x^6+69 x^5+47 x^4+x^3+82 x^2+31 x+32$
- $y^2=58 x^6+62 x^5+51 x^4+77 x^3+29 x^2+75 x+5$
- $y^2=44 x^6+37 x^5+77 x^4+25 x^3+68 x+41$
- and 61 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{3}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-3})\). |
| The base change of $A$ to $\F_{83^{3}}$ is 1.571787.abzy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.