Properties

Label 2-6800-1.1-c1-0-150
Degree $2$
Conductor $6800$
Sign $-1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·7-s + 9-s + 2·11-s − 2·13-s − 17-s − 8·19-s + 4·21-s − 6·23-s − 4·27-s − 2·29-s − 6·31-s + 4·33-s + 2·37-s − 4·39-s − 6·41-s − 8·43-s + 8·47-s − 3·49-s − 2·51-s − 6·53-s − 16·57-s − 10·61-s + 2·63-s + 12·67-s − 12·69-s − 6·71-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.755·7-s + 1/3·9-s + 0.603·11-s − 0.554·13-s − 0.242·17-s − 1.83·19-s + 0.872·21-s − 1.25·23-s − 0.769·27-s − 0.371·29-s − 1.07·31-s + 0.696·33-s + 0.328·37-s − 0.640·39-s − 0.937·41-s − 1.21·43-s + 1.16·47-s − 3/7·49-s − 0.280·51-s − 0.824·53-s − 2.11·57-s − 1.28·61-s + 0.251·63-s + 1.46·67-s − 1.44·69-s − 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85993318905395599558324003715, −7.04900491180823825979959054378, −6.31477029274768471345854341829, −5.47954157508681642844632097128, −4.50580756842865757559681134090, −3.98669669826528938513565883188, −3.16169665756874818643723760412, −2.07571643927954135034781609438, −1.81656707965426112316039617918, 0, 1.81656707965426112316039617918, 2.07571643927954135034781609438, 3.16169665756874818643723760412, 3.98669669826528938513565883188, 4.50580756842865757559681134090, 5.47954157508681642844632097128, 6.31477029274768471345854341829, 7.04900491180823825979959054378, 7.85993318905395599558324003715

Graph of the $Z$-function along the critical line