Properties

Label 2-5760-1.1-c1-0-22
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·11-s + 4·13-s + 25-s − 2·29-s + 10·31-s + 4·37-s − 6·41-s − 4·43-s − 7·49-s − 2·53-s − 2·55-s + 6·59-s + 6·61-s − 4·65-s − 4·67-s − 8·71-s + 14·73-s + 2·79-s + 4·83-s − 14·89-s − 6·97-s + 18·101-s − 4·103-s + 16·107-s + 10·109-s − 8·113-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.603·11-s + 1.10·13-s + 1/5·25-s − 0.371·29-s + 1.79·31-s + 0.657·37-s − 0.937·41-s − 0.609·43-s − 49-s − 0.274·53-s − 0.269·55-s + 0.781·59-s + 0.768·61-s − 0.496·65-s − 0.488·67-s − 0.949·71-s + 1.63·73-s + 0.225·79-s + 0.439·83-s − 1.48·89-s − 0.609·97-s + 1.79·101-s − 0.394·103-s + 1.54·107-s + 0.957·109-s − 0.752·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.970312860\)
\(L(\frac12)\) \(\approx\) \(1.970312860\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.312676356068141486887747723637, −7.42477295172740950822190830872, −6.57549138477247304254310444403, −6.17923449566841364294949347305, −5.17880530731220745694279259573, −4.38414527146797782079381855411, −3.68154824825393064849181438739, −2.95445518016292024291572856518, −1.74961901348703542348284567589, −0.77475453833202687945740653824, 0.77475453833202687945740653824, 1.74961901348703542348284567589, 2.95445518016292024291572856518, 3.68154824825393064849181438739, 4.38414527146797782079381855411, 5.17880530731220745694279259573, 6.17923449566841364294949347305, 6.57549138477247304254310444403, 7.42477295172740950822190830872, 8.312676356068141486887747723637

Graph of the $Z$-function along the critical line