Properties

Label 2-5200-1.1-c1-0-15
Degree $2$
Conductor $5200$
Sign $1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·7-s + 9-s + 6·11-s − 13-s + 6·17-s − 2·19-s + 8·21-s + 6·23-s + 4·27-s − 6·29-s − 2·31-s − 12·33-s − 2·37-s + 2·39-s − 6·41-s + 2·43-s − 12·47-s + 9·49-s − 12·51-s − 6·53-s + 4·57-s − 6·59-s + 2·61-s − 4·63-s − 4·67-s − 12·69-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.51·7-s + 1/3·9-s + 1.80·11-s − 0.277·13-s + 1.45·17-s − 0.458·19-s + 1.74·21-s + 1.25·23-s + 0.769·27-s − 1.11·29-s − 0.359·31-s − 2.08·33-s − 0.328·37-s + 0.320·39-s − 0.937·41-s + 0.304·43-s − 1.75·47-s + 9/7·49-s − 1.68·51-s − 0.824·53-s + 0.529·57-s − 0.781·59-s + 0.256·61-s − 0.503·63-s − 0.488·67-s − 1.44·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8944437354\)
\(L(\frac12)\) \(\approx\) \(0.8944437354\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.213530218564666422042745170276, −7.06131301059558677772842905607, −6.71868250920883347037320613529, −6.09537021719183316071845549540, −5.49470951582837291168916858524, −4.63963070668118381856757068684, −3.56103682472085605806726816667, −3.18509658263545205045634750583, −1.60140924509725930425728921841, −0.56112236532926247126304648946, 0.56112236532926247126304648946, 1.60140924509725930425728921841, 3.18509658263545205045634750583, 3.56103682472085605806726816667, 4.63963070668118381856757068684, 5.49470951582837291168916858524, 6.09537021719183316071845549540, 6.71868250920883347037320613529, 7.06131301059558677772842905607, 8.213530218564666422042745170276

Graph of the $Z$-function along the critical line