L(s) = 1 | − 9-s + 6·11-s − 2·19-s − 10·29-s + 12·31-s + 10·41-s + 13·49-s − 8·59-s − 4·61-s + 24·71-s − 12·79-s + 81-s + 8·89-s − 6·99-s + 28·101-s + 12·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + ⋯ |
L(s) = 1 | − 1/3·9-s + 1.80·11-s − 0.458·19-s − 1.85·29-s + 2.15·31-s + 1.56·41-s + 13/7·49-s − 1.04·59-s − 0.512·61-s + 2.84·71-s − 1.35·79-s + 1/9·81-s + 0.847·89-s − 0.603·99-s + 2.78·101-s + 1.14·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26010000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26010000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.572768794\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.572768794\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.467132703527706988056431842422, −8.008344353199177480174596600086, −7.60841969027613344442237919350, −7.46157970889129836355595890886, −6.89626654278523870356782778648, −6.54139208937578183844298365969, −6.19970249914630084247988314563, −6.10257358970966524742627372640, −5.42648218827654808814157414637, −5.30151636227306976678832792527, −4.46465427005546982190048508354, −4.37017207054826590867799794357, −4.01922700746083951469093353481, −3.52179719520933048222143004110, −3.16181846924904714075739091233, −2.59274835567855475876969783960, −2.08800904308444097327123338874, −1.71817045535855694975864207622, −0.945959197102127054280674007046, −0.62263138106937022346449939365,
0.62263138106937022346449939365, 0.945959197102127054280674007046, 1.71817045535855694975864207622, 2.08800904308444097327123338874, 2.59274835567855475876969783960, 3.16181846924904714075739091233, 3.52179719520933048222143004110, 4.01922700746083951469093353481, 4.37017207054826590867799794357, 4.46465427005546982190048508354, 5.30151636227306976678832792527, 5.42648218827654808814157414637, 6.10257358970966524742627372640, 6.19970249914630084247988314563, 6.54139208937578183844298365969, 6.89626654278523870356782778648, 7.46157970889129836355595890886, 7.60841969027613344442237919350, 8.008344353199177480174596600086, 8.467132703527706988056431842422