Properties

Label 2.23.a_abq
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 - 42 x^{2} + 529 x^{4}$
Frobenius angles:  $\pm0.0668628183960$, $\pm0.933137181604$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{22})\)
Galois group:  $C_2^2$
Jacobians:  $3$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $488$ $238144$ $148028456$ $77916906496$ $41426517718568$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $24$ $446$ $12168$ $278430$ $6436344$ $148021022$ $3404825448$ $78311107774$ $1801152661464$ $41426524223486$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23^{2}}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{22})\).
Endomorphism algebra over $\overline{\F}_{23}$
The base change of $A$ to $\F_{23^{2}}$ is 1.529.abq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ae_by$4$(not in LMFDB)
2.23.a_bq$4$(not in LMFDB)
2.23.e_by$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ae_by$4$(not in LMFDB)
2.23.a_bq$4$(not in LMFDB)
2.23.e_by$4$(not in LMFDB)
2.23.ac_at$12$(not in LMFDB)
2.23.c_at$12$(not in LMFDB)