Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 42 x^{2} + 529 x^{4}$ |
Frobenius angles: | $\pm0.0668628183960$, $\pm0.933137181604$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{22})\) |
Galois group: | $C_2^2$ |
Jacobians: | $3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $488$ | $238144$ | $148028456$ | $77916906496$ | $41426517718568$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $446$ | $12168$ | $278430$ | $6436344$ | $148021022$ | $3404825448$ | $78311107774$ | $1801152661464$ | $41426524223486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=5 x^6+8 x^4+11 x^3+22 x^2+12 x+13$
- $y^2=21 x^6+8 x^5+7 x^4+6 x^3+14 x^2+3 x+21$
- $y^2=9 x^6+10 x^5+6 x^4+4 x^2+16 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{22})\). |
The base change of $A$ to $\F_{23^{2}}$ is 1.529.abq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$ |
Base change
This is a primitive isogeny class.