Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 41 x^{2} )^{2}$ |
$1 - 10 x + 107 x^{2} - 410 x^{3} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.372324822061$, $\pm0.372324822061$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $21$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1369$ | $3024121$ | $4818025744$ | $7985569515625$ | $13418135738402329$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $1796$ | $69902$ | $2825988$ | $115817152$ | $4749899726$ | $194754852352$ | $7984936506628$ | $327381967064222$ | $13422659011125956$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 21 curves (of which all are hyperelliptic):
- $y^2=12 x^6+25 x^5+16 x^4+13 x^3+x^2+23 x+38$
- $y^2=4 x^6+35 x^5+18 x^4+15 x^3+16 x^2+15 x+23$
- $y^2=29 x^6+16 x^5+39 x^4+21 x^3+27 x^2+11 x+16$
- $y^2=7 x^6+5 x^5+31 x^4+36 x^3+18 x^2+35 x+17$
- $y^2=20 x^6+14 x^5+20 x^4+7 x^3+9 x^2+26 x+5$
- $y^2=2 x^6+17 x^5+2 x^4+35 x^3+35 x^2+36 x+7$
- $y^2=33 x^6+16 x^5+x^4+35 x^3+33 x^2+40 x+37$
- $y^2=23 x^6+37 x^5+21 x^4+23 x^3+27 x^2+20$
- $y^2=31 x^6+38 x^5+26 x^4+5 x^3+34 x^2+7 x+20$
- $y^2=24 x^6+31 x^5+33 x^4+25 x^3+21 x^2+29 x+12$
- $y^2=24 x^6+16 x^5+10 x^4+12 x^3+23 x^2+x+26$
- $y^2=10 x^6+5 x^5+23 x^4+31 x^3+31 x^2+39 x+16$
- $y^2=7 x^6+40 x^5+24 x^4+26 x^3+29 x^2+10 x+35$
- $y^2=39 x^6+15 x^5+18 x^4+7 x^3+4 x^2+2 x+26$
- $y^2=3 x^6+23 x^4+21 x^3+39 x^2+27$
- $y^2=28 x^6+19 x^5+23 x^4+25 x^3+22 x^2+38 x+3$
- $y^2=33 x^6+31 x^5+10 x^4+26 x^3+24 x^2+10 x+11$
- $y^2=36 x^6+39 x^5+13 x^4+3 x^3+13 x^2+39 x+36$
- $y^2=38 x^6+34 x^5+38 x^4+38 x^3+33 x^2+35 x+24$
- $y^2=34 x^6+8 x^5+20 x^4+38 x^3+x^2+32 x+15$
- $y^2=39 x^6+2 x^5+9 x^4+11 x^3+4 x^2+9 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.af 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-139}) \)$)$ |
Base change
This is a primitive isogeny class.