Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 23 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.275177233176$, $\pm0.724822766824$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{123})\) |
Galois group: | $C_2^2$ |
Jacobians: | $154$ |
Isomorphism classes: | 172 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5353$ | $28654609$ | $151333870756$ | $807035542873641$ | $4297625832651601993$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5376$ | $389018$ | $28418500$ | $2073071594$ | $151333515222$ | $11047398519098$ | $806460000293764$ | $58871586708267914$ | $4297625835599646336$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):
- $y^2=18 x^6+41 x^5+31 x^4+5 x^3+53 x^2+38 x+71$
- $y^2=17 x^6+59 x^5+9 x^4+25 x^3+46 x^2+44 x+63$
- $y^2=22 x^6+46 x^5+57 x^4+44 x^3+3 x^2+71 x+5$
- $y^2=37 x^6+11 x^5+66 x^4+x^3+15 x^2+63 x+25$
- $y^2=6 x^6+64 x^5+43 x^4+60 x^3+16 x^2+16 x+15$
- $y^2=30 x^6+28 x^5+69 x^4+8 x^3+7 x^2+7 x+2$
- $y^2=60 x^6+28 x^5+66 x^4+55 x^3+15 x^2+31 x+16$
- $y^2=8 x^6+67 x^5+38 x^4+56 x^3+2 x^2+9 x+7$
- $y^2=4 x^6+12 x^5+41 x^4+56 x^3+30 x^2+33 x+49$
- $y^2=20 x^6+60 x^5+59 x^4+61 x^3+4 x^2+19 x+26$
- $y^2=55 x^6+54 x^5+52 x^4+33 x^3+54 x^2+20 x+10$
- $y^2=56 x^6+51 x^5+41 x^4+19 x^3+51 x^2+27 x+50$
- $y^2=37 x^6+14 x^5+36 x^4+45 x^3+63 x^2+52 x+58$
- $y^2=19 x^6+67 x^5+22 x^4+14 x^3+15 x^2+9 x+12$
- $y^2=22 x^6+43 x^5+37 x^4+70 x^3+2 x^2+45 x+60$
- $y^2=25 x^6+31 x^5+15 x^4+19 x^3+23 x^2+9 x+30$
- $y^2=52 x^6+9 x^5+2 x^4+22 x^3+42 x^2+45 x+4$
- $y^2=65 x^6+15 x^5+35 x^4+43 x^3+41$
- $y^2=33 x^6+2 x^5+29 x^4+69 x^3+59$
- $y^2=45 x^6+17 x^5+32 x^4+56 x^3+59 x^2+28 x+53$
- and 134 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{123})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.x 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-123}) \)$)$ |
Base change
This is a primitive isogeny class.