Properties

Label 2-486-1.1-c1-0-4
Degree $2$
Conductor $486$
Sign $1$
Analytic cond. $3.88072$
Root an. cond. $1.96995$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s + 6·11-s − 13-s − 14-s + 16-s + 6·17-s + 5·19-s + 6·22-s − 6·23-s − 5·25-s − 26-s − 28-s + 6·29-s − 7·31-s + 32-s + 6·34-s − 7·37-s + 5·38-s + 5·43-s + 6·44-s − 6·46-s − 6·47-s − 6·49-s − 5·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s + 1.80·11-s − 0.277·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 1.14·19-s + 1.27·22-s − 1.25·23-s − 25-s − 0.196·26-s − 0.188·28-s + 1.11·29-s − 1.25·31-s + 0.176·32-s + 1.02·34-s − 1.15·37-s + 0.811·38-s + 0.762·43-s + 0.904·44-s − 0.884·46-s − 0.875·47-s − 6/7·49-s − 0.707·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(486\)    =    \(2 \cdot 3^{5}\)
Sign: $1$
Analytic conductor: \(3.88072\)
Root analytic conductor: \(1.96995\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 486,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.266323598\)
\(L(\frac12)\) \(\approx\) \(2.266323598\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.24491673338291489731146429192, −9.943813929580416197080231374652, −9.462532112195837169722009684835, −8.119718303065574933176111998816, −7.13851164803832070932827069270, −6.23082135950629212838366670654, −5.36559149920159416821901753580, −4.02055663905092829594123573049, −3.28066431744467752166245100129, −1.54349533627005461870574872570, 1.54349533627005461870574872570, 3.28066431744467752166245100129, 4.02055663905092829594123573049, 5.36559149920159416821901753580, 6.23082135950629212838366670654, 7.13851164803832070932827069270, 8.119718303065574933176111998816, 9.462532112195837169722009684835, 9.943813929580416197080231374652, 11.24491673338291489731146429192

Graph of the $Z$-function along the critical line