Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 11 x + 79 x^{2}$ |
| Frobenius angles: | $\pm0.287619798331$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-195}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $69$ | $6279$ | $494316$ | $38961195$ | $3077077839$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $69$ | $6279$ | $494316$ | $38961195$ | $3077077839$ | $243086813424$ | $19203900229401$ | $1517108764307955$ | $119851596172817604$ | $9468276088321329279$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+50 x+71$
- $y^2=x^3+72 x+72$
- $y^2=x^3+77 x+73$
- $y^2=x^3+54 x+54$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-195}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.79.l | $2$ | (not in LMFDB) |