L(s) = 1 | − 2·7-s − 13-s + 12·17-s + 4·19-s + 5·25-s − 6·29-s − 2·31-s + 4·37-s − 12·41-s + 4·43-s + 7·49-s − 12·53-s + 12·59-s − 2·61-s + 10·67-s − 24·71-s + 28·73-s − 8·79-s + 12·83-s + 2·91-s + 10·97-s + 18·101-s + 16·103-s + 24·107-s + 28·109-s + 6·113-s − 24·119-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 0.277·13-s + 2.91·17-s + 0.917·19-s + 25-s − 1.11·29-s − 0.359·31-s + 0.657·37-s − 1.87·41-s + 0.609·43-s + 49-s − 1.64·53-s + 1.56·59-s − 0.256·61-s + 1.22·67-s − 2.84·71-s + 3.27·73-s − 0.900·79-s + 1.31·83-s + 0.209·91-s + 1.01·97-s + 1.79·101-s + 1.57·103-s + 2.32·107-s + 2.68·109-s + 0.564·113-s − 2.20·119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17740944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17740944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.328328720\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.328328720\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.614014174793246721113755705275, −8.143553346055720430942235596815, −7.69539199413123751589677082495, −7.58243384334465302098618819568, −7.14844492485374350441715973146, −6.93062644212712924489559958490, −6.22489766085349004328300136703, −6.05846308948895687089457856837, −5.58289516293877438294893616204, −5.36080263771802947363668214162, −4.82781622868573726056127004554, −4.65089872151306710121541746823, −3.69551268326919292542764562696, −3.59161748305652296674198671519, −3.12798107092266865858283211019, −3.04187594877793618101363243463, −2.08814678888175711037273808641, −1.79068614878330914646887036021, −0.824311461145586577499358771977, −0.73372551445957873793040119268,
0.73372551445957873793040119268, 0.824311461145586577499358771977, 1.79068614878330914646887036021, 2.08814678888175711037273808641, 3.04187594877793618101363243463, 3.12798107092266865858283211019, 3.59161748305652296674198671519, 3.69551268326919292542764562696, 4.65089872151306710121541746823, 4.82781622868573726056127004554, 5.36080263771802947363668214162, 5.58289516293877438294893616204, 6.05846308948895687089457856837, 6.22489766085349004328300136703, 6.93062644212712924489559958490, 7.14844492485374350441715973146, 7.58243384334465302098618819568, 7.69539199413123751589677082495, 8.143553346055720430942235596815, 8.614014174793246721113755705275