Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x - 57 x^{2} + 122 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.207534254477$, $\pm0.874200921144$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $28$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3789$ | $13416849$ | $51683475600$ | $191797089915609$ | $713372305669967709$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $3604$ | $227698$ | $13852324$ | $844631104$ | $51521025958$ | $3142740061504$ | $191707327321924$ | $11694145697044378$ | $713342911184869204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=28 x^6+56 x^5+27 x^4+47 x^3+27 x^2+48 x+53$
- $y^2=x^6+x^3+22$
- $y^2=45 x^6+52 x^5+22 x^4+35 x^3+28 x^2+31 x+29$
- $y^2=23 x^6+15 x^5+4 x^4+40 x^3+56 x^2+32 x+58$
- $y^2=35 x^6+13 x^5+43 x^4+19 x^2+60 x+58$
- $y^2=45 x^6+27 x^5+31 x^4+39 x^3+42 x^2+5 x+16$
- $y^2=51 x^6+16 x^5+2 x^3+57 x^2+32 x+35$
- $y^2=39 x^6+47 x^5+34 x^4+23 x^3+55 x^2+55 x+4$
- $y^2=39 x^6+29 x^5+28 x^4+45 x^3+42 x^2+31 x+1$
- $y^2=23 x^6+34 x^5+57 x^4+33 x^3+43 x^2+24 x+58$
- $y^2=22 x^6+32 x^5+22 x^4+16 x^3+33 x^2+47 x+33$
- $y^2=22 x^6+9 x^5+3 x^4+42 x^3+40 x^2+13 x+30$
- $y^2=22 x^6+9 x^5+31 x^4+30 x^3+34 x^2+17 x+46$
- $y^2=9 x^6+18 x^5+25 x^4+12 x^3+37 x^2+50 x+10$
- $y^2=7 x^6+26 x^5+10 x^4+15 x^3+18 x^2+9 x+45$
- $y^2=x^6+2 x^3+49$
- $y^2=46 x^6+34 x^5+42 x^4+57 x^3+56 x^2+49 x+55$
- $y^2=18 x^6+30 x^5+4 x^4+50 x^3+25 x^2+35 x+49$
- $y^2=45 x^6+50 x^5+57 x^4+29 x^3+21 x^2+14 x+60$
- $y^2=14 x^6+59 x^5+4 x^4+49 x^3+4 x^2+38 x+31$
- $y^2=17 x^6+29 x^5+27 x^4+28 x^3+30 x^2+37 x+27$
- $y^2=22 x^6+19 x^5+47 x^4+39 x^3+59 x^2+17 x+30$
- $y^2=31 x^6+60 x^5+x^4+8 x^3+14 x^2+57 x+50$
- $y^2=x^6+x^3+45$
- $y^2=x^6+x^3+13$
- $y^2=20 x^6+21 x^5+48 x^4+34 x^3+6 x^2+41 x+24$
- $y^2=10 x^6+36 x^5+27 x^4+12 x^3+26 x^2+17 x+8$
- $y^2=36 x^6+29 x^5+27 x^4+59 x^3+16 x^2+6 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.nu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.