-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3789, 'abvar_counts': [3789, 13416849, 51683475600, 191797089915609, 713372305669967709, 2654382544976624025600, 9876823813769305388321349, 36751696602776105587980446889, 136753048212124746181679089347600, 508858109278691660308561918656047409], 'abvar_counts_str': '3789 13416849 51683475600 191797089915609 713372305669967709 2654382544976624025600 9876823813769305388321349 36751696602776105587980446889 136753048212124746181679089347600 508858109278691660308561918656047409 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.207534254477192, 0.874200921143859], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 64, 'curve_counts': [64, 3604, 227698, 13852324, 844631104, 51521025958, 3142740061504, 191707327321924, 11694145697044378, 713342911184869204], 'curve_counts_str': '64 3604 227698 13852324 844631104 51521025958 3142740061504 191707327321924 11694145697044378 713342911184869204 ', 'curves': ['y^2=28*x^6+56*x^5+27*x^4+47*x^3+27*x^2+48*x+53', 'y^2=x^6+x^3+22', 'y^2=45*x^6+52*x^5+22*x^4+35*x^3+28*x^2+31*x+29', 'y^2=23*x^6+15*x^5+4*x^4+40*x^3+56*x^2+32*x+58', 'y^2=35*x^6+13*x^5+43*x^4+19*x^2+60*x+58', 'y^2=45*x^6+27*x^5+31*x^4+39*x^3+42*x^2+5*x+16', 'y^2=51*x^6+16*x^5+2*x^3+57*x^2+32*x+35', 'y^2=39*x^6+47*x^5+34*x^4+23*x^3+55*x^2+55*x+4', 'y^2=39*x^6+29*x^5+28*x^4+45*x^3+42*x^2+31*x+1', 'y^2=23*x^6+34*x^5+57*x^4+33*x^3+43*x^2+24*x+58', 'y^2=22*x^6+32*x^5+22*x^4+16*x^3+33*x^2+47*x+33', 'y^2=22*x^6+9*x^5+3*x^4+42*x^3+40*x^2+13*x+30', 'y^2=22*x^6+9*x^5+31*x^4+30*x^3+34*x^2+17*x+46', 'y^2=9*x^6+18*x^5+25*x^4+12*x^3+37*x^2+50*x+10', 'y^2=7*x^6+26*x^5+10*x^4+15*x^3+18*x^2+9*x+45', 'y^2=x^6+2*x^3+49', 'y^2=46*x^6+34*x^5+42*x^4+57*x^3+56*x^2+49*x+55', 'y^2=18*x^6+30*x^5+4*x^4+50*x^3+25*x^2+35*x+49', 'y^2=45*x^6+50*x^5+57*x^4+29*x^3+21*x^2+14*x+60', 'y^2=14*x^6+59*x^5+4*x^4+49*x^3+4*x^2+38*x+31', 'y^2=17*x^6+29*x^5+27*x^4+28*x^3+30*x^2+37*x+27', 'y^2=22*x^6+19*x^5+47*x^4+39*x^3+59*x^2+17*x+30', 'y^2=31*x^6+60*x^5+x^4+8*x^3+14*x^2+57*x+50', 'y^2=x^6+x^3+45', 'y^2=x^6+x^3+13', 'y^2=20*x^6+21*x^5+48*x^4+34*x^3+6*x^2+41*x+24', 'y^2=10*x^6+36*x^5+27*x^4+12*x^3+26*x^2+17*x+8', 'y^2=36*x^6+29*x^5+27*x^4+59*x^3+16*x^2+6*x+51'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 18, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.15.1'], 'geometric_splitting_field': '2.0.15.1', 'geometric_splitting_polynomials': [[4, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 28, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 28, 'label': '2.61.c_acf', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.225.1'], 'p': 61, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 2, -57, 122, 3721], 'poly_str': '1 2 -57 122 3721 ', 'primitive_models': [], 'q': 61, 'real_poly': [1, 2, -179], 'simple_distinct': ['2.61.c_acf'], 'simple_factors': ['2.61.c_acfA'], 'simple_multiplicities': [1], 'singular_primes': ['2,5*F^2+4*F-7*V-18', '3,-3*F+4*V+8', '19,3*F^2+68*F-72*V-134'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.225.1', 'splitting_polynomials': [[1, 1, 2, -1, 1]], 'twist_count': 6, 'twists': [['2.61.ac_acf', '2.3721.aeo_pcl', 2], ['2.61.ae_ew', '2.226981.bbo_bhddm', 3], ['2.61.ac_acf', '2.51520374361.blbxk_babedlwuo', 6], ['2.61.a_eo', '2.51520374361.blbxk_babedlwuo', 6], ['2.61.e_ew', '2.51520374361.blbxk_babedlwuo', 6], ['2.61.a_aeo', '2.2654348974297586158321.auclebgu_delmuhkqpubxegpy', 12]], 'weak_equivalence_count': 18, 'zfv_index': 2736, 'zfv_index_factorization': [[2, 4], [3, 2], [19, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 12, 'zfv_plus_index_factorization': [[2, 2], [3, 1]], 'zfv_plus_norm': 3249, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,5*F^2+4*F-7*V-18', '3,-3*F+4*V+8', '19,3*F^2+68*F-72*V-134']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 54783
{'base_label': '2.61.c_acf', 'extension_degree': 1, 'extension_label': '2.61.c_acf', 'multiplicity': 1}
-
id: 54784
{'base_label': '2.61.c_acf', 'extension_degree': 3, 'extension_label': '1.226981.nu', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.225.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.61.c_acf', 'galois_group': '4T2', 'places': [['53', '1', '0', '0'], ['23', '1', '0', '0'], ['55', '1', '0', '0'], ['51', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.15.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.226981.nu', 'galois_group': '2T1', 'places': [['15', '1'], ['45', '1']]}