L(s) = 1 | + 2-s − 5-s − 2·7-s − 8-s − 10-s + 11-s + 13-s − 2·14-s − 16-s − 10·17-s + 6·19-s + 22-s + 26-s + 8·29-s − 6·31-s − 10·34-s + 2·35-s − 16·37-s + 6·38-s + 40-s + 7·41-s − 5·43-s − 12·47-s + 7·49-s − 4·53-s − 55-s + 2·56-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.447·5-s − 0.755·7-s − 0.353·8-s − 0.316·10-s + 0.301·11-s + 0.277·13-s − 0.534·14-s − 1/4·16-s − 2.42·17-s + 1.37·19-s + 0.213·22-s + 0.196·26-s + 1.48·29-s − 1.07·31-s − 1.71·34-s + 0.338·35-s − 2.63·37-s + 0.973·38-s + 0.158·40-s + 1.09·41-s − 0.762·43-s − 1.75·47-s + 49-s − 0.549·53-s − 0.134·55-s + 0.267·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12320100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12320100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4363033361\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4363033361\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.836378011511291963881294864645, −8.431420282665371087248460688158, −8.212886836932968270747120215996, −7.29595125668086425625171373231, −7.22345899988281511316687118548, −7.01677364232228273208716711719, −6.38208229646195204086821196752, −6.24563690617456204549495509686, −5.77545485277356540238842344107, −5.31925618873662863103241807560, −4.71347161161108946780578017702, −4.68573705182230860107779556324, −4.17996937250630235286214880096, −3.66493443569365931540491263894, −3.18883287848661479335573067989, −3.12908415246417627941448169128, −2.38271564793668515133924981672, −1.81689252393259546455818039967, −1.23953861718959448476971005089, −0.17790834389363177406800796806,
0.17790834389363177406800796806, 1.23953861718959448476971005089, 1.81689252393259546455818039967, 2.38271564793668515133924981672, 3.12908415246417627941448169128, 3.18883287848661479335573067989, 3.66493443569365931540491263894, 4.17996937250630235286214880096, 4.68573705182230860107779556324, 4.71347161161108946780578017702, 5.31925618873662863103241807560, 5.77545485277356540238842344107, 6.24563690617456204549495509686, 6.38208229646195204086821196752, 7.01677364232228273208716711719, 7.22345899988281511316687118548, 7.29595125668086425625171373231, 8.212886836932968270747120215996, 8.431420282665371087248460688158, 8.836378011511291963881294864645