Properties

Label 3510.2.j.e.1171.1
Level $3510$
Weight $2$
Character 3510.1171
Analytic conductor $28.027$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3510,2,Mod(1171,3510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3510, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3510.1171"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3510 = 2 \cdot 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3510.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,-1,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0274911095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1170)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3510.1171
Dual form 3510.2.j.e.2341.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-1.00000 - 1.73205i) q^{7} -1.00000 q^{8} -1.00000 q^{10} +(0.500000 + 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{13} +(1.00000 - 1.73205i) q^{14} +(-0.500000 - 0.866025i) q^{16} -5.00000 q^{17} +3.00000 q^{19} +(-0.500000 - 0.866025i) q^{20} +(-0.500000 + 0.866025i) q^{22} +(-0.500000 - 0.866025i) q^{25} +1.00000 q^{26} +2.00000 q^{28} +(4.00000 + 6.92820i) q^{29} +(-3.00000 + 5.19615i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-2.50000 - 4.33013i) q^{34} +2.00000 q^{35} -8.00000 q^{37} +(1.50000 + 2.59808i) q^{38} +(0.500000 - 0.866025i) q^{40} +(3.50000 - 6.06218i) q^{41} +(-2.50000 - 4.33013i) q^{43} -1.00000 q^{44} +(-6.00000 - 10.3923i) q^{47} +(1.50000 - 2.59808i) q^{49} +(0.500000 - 0.866025i) q^{50} +(0.500000 + 0.866025i) q^{52} -2.00000 q^{53} -1.00000 q^{55} +(1.00000 + 1.73205i) q^{56} +(-4.00000 + 6.92820i) q^{58} +(-2.50000 + 4.33013i) q^{59} +(-7.00000 - 12.1244i) q^{61} -6.00000 q^{62} +1.00000 q^{64} +(0.500000 + 0.866025i) q^{65} +(7.50000 - 12.9904i) q^{67} +(2.50000 - 4.33013i) q^{68} +(1.00000 + 1.73205i) q^{70} +2.00000 q^{71} -11.0000 q^{73} +(-4.00000 - 6.92820i) q^{74} +(-1.50000 + 2.59808i) q^{76} +(1.00000 - 1.73205i) q^{77} +(-1.00000 - 1.73205i) q^{79} +1.00000 q^{80} +7.00000 q^{82} +(-6.00000 - 10.3923i) q^{83} +(2.50000 - 4.33013i) q^{85} +(2.50000 - 4.33013i) q^{86} +(-0.500000 - 0.866025i) q^{88} -10.0000 q^{89} -2.00000 q^{91} +(6.00000 - 10.3923i) q^{94} +(-1.50000 + 2.59808i) q^{95} +(6.50000 + 11.2583i) q^{97} +3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{5} - 2 q^{7} - 2 q^{8} - 2 q^{10} + q^{11} + q^{13} + 2 q^{14} - q^{16} - 10 q^{17} + 6 q^{19} - q^{20} - q^{22} - q^{25} + 2 q^{26} + 4 q^{28} + 8 q^{29} - 6 q^{31} + q^{32}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3510\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(2081\) \(2107\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 1.00000 1.73205i 0.267261 0.462910i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.106600 + 0.184637i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 4.00000 + 6.92820i 0.742781 + 1.28654i 0.951224 + 0.308500i \(0.0998271\pi\)
−0.208443 + 0.978035i \(0.566840\pi\)
\(30\) 0 0
\(31\) −3.00000 + 5.19615i −0.538816 + 0.933257i 0.460152 + 0.887840i \(0.347795\pi\)
−0.998968 + 0.0454165i \(0.985539\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −2.50000 4.33013i −0.428746 0.742611i
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 1.50000 + 2.59808i 0.243332 + 0.421464i
\(39\) 0 0
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) 3.50000 6.06218i 0.546608 0.946753i −0.451896 0.892071i \(-0.649252\pi\)
0.998504 0.0546823i \(-0.0174146\pi\)
\(42\) 0 0
\(43\) −2.50000 4.33013i −0.381246 0.660338i 0.609994 0.792406i \(-0.291172\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 10.3923i −0.875190 1.51587i −0.856560 0.516047i \(-0.827403\pi\)
−0.0186297 0.999826i \(-0.505930\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 1.00000 + 1.73205i 0.133631 + 0.231455i
\(57\) 0 0
\(58\) −4.00000 + 6.92820i −0.525226 + 0.909718i
\(59\) −2.50000 + 4.33013i −0.325472 + 0.563735i −0.981608 0.190909i \(-0.938857\pi\)
0.656136 + 0.754643i \(0.272190\pi\)
\(60\) 0 0
\(61\) −7.00000 12.1244i −0.896258 1.55236i −0.832240 0.554416i \(-0.812942\pi\)
−0.0640184 0.997949i \(-0.520392\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.500000 + 0.866025i 0.0620174 + 0.107417i
\(66\) 0 0
\(67\) 7.50000 12.9904i 0.916271 1.58703i 0.111241 0.993793i \(-0.464517\pi\)
0.805030 0.593234i \(-0.202149\pi\)
\(68\) 2.50000 4.33013i 0.303170 0.525105i
\(69\) 0 0
\(70\) 1.00000 + 1.73205i 0.119523 + 0.207020i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) −1.50000 + 2.59808i −0.172062 + 0.298020i
\(77\) 1.00000 1.73205i 0.113961 0.197386i
\(78\) 0 0
\(79\) −1.00000 1.73205i −0.112509 0.194871i 0.804272 0.594261i \(-0.202555\pi\)
−0.916781 + 0.399390i \(0.869222\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 7.00000 0.773021
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 0 0
\(85\) 2.50000 4.33013i 0.271163 0.469668i
\(86\) 2.50000 4.33013i 0.269582 0.466930i
\(87\) 0 0
\(88\) −0.500000 0.866025i −0.0533002 0.0923186i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 6.00000 10.3923i 0.618853 1.07188i
\(95\) −1.50000 + 2.59808i −0.153897 + 0.266557i
\(96\) 0 0
\(97\) 6.50000 + 11.2583i 0.659975 + 1.14311i 0.980622 + 0.195911i \(0.0627665\pi\)
−0.320647 + 0.947199i \(0.603900\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) −0.500000 + 0.866025i −0.0490290 + 0.0849208i
\(105\) 0 0
\(106\) −1.00000 1.73205i −0.0971286 0.168232i
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) −0.500000 0.866025i −0.0476731 0.0825723i
\(111\) 0 0
\(112\) −1.00000 + 1.73205i −0.0944911 + 0.163663i
\(113\) 7.00000 12.1244i 0.658505 1.14056i −0.322498 0.946570i \(-0.604523\pi\)
0.981003 0.193993i \(-0.0621440\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) 0 0
\(118\) −5.00000 −0.460287
\(119\) 5.00000 + 8.66025i 0.458349 + 0.793884i
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 7.00000 12.1244i 0.633750 1.09769i
\(123\) 0 0
\(124\) −3.00000 5.19615i −0.269408 0.466628i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 22.0000 1.95218 0.976092 0.217357i \(-0.0697436\pi\)
0.976092 + 0.217357i \(0.0697436\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −0.500000 + 0.866025i −0.0438529 + 0.0759555i
\(131\) 2.00000 3.46410i 0.174741 0.302660i −0.765331 0.643637i \(-0.777425\pi\)
0.940072 + 0.340977i \(0.110758\pi\)
\(132\) 0 0
\(133\) −3.00000 5.19615i −0.260133 0.450564i
\(134\) 15.0000 1.29580
\(135\) 0 0
\(136\) 5.00000 0.428746
\(137\) 1.50000 + 2.59808i 0.128154 + 0.221969i 0.922961 0.384893i \(-0.125762\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) −3.50000 + 6.06218i −0.296866 + 0.514187i −0.975417 0.220366i \(-0.929275\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) −1.00000 + 1.73205i −0.0845154 + 0.146385i
\(141\) 0 0
\(142\) 1.00000 + 1.73205i 0.0839181 + 0.145350i
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) −5.50000 9.52628i −0.455183 0.788400i
\(147\) 0 0
\(148\) 4.00000 6.92820i 0.328798 0.569495i
\(149\) 7.00000 12.1244i 0.573462 0.993266i −0.422744 0.906249i \(-0.638933\pi\)
0.996207 0.0870170i \(-0.0277334\pi\)
\(150\) 0 0
\(151\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) 0 0
\(157\) −11.0000 + 19.0526i −0.877896 + 1.52056i −0.0242497 + 0.999706i \(0.507720\pi\)
−0.853646 + 0.520854i \(0.825614\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 0 0
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 3.50000 + 6.06218i 0.273304 + 0.473377i
\(165\) 0 0
\(166\) 6.00000 10.3923i 0.465690 0.806599i
\(167\) 4.00000 6.92820i 0.309529 0.536120i −0.668730 0.743505i \(-0.733162\pi\)
0.978259 + 0.207385i \(0.0664952\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 5.00000 0.383482
\(171\) 0 0
\(172\) 5.00000 0.381246
\(173\) −7.00000 12.1244i −0.532200 0.921798i −0.999293 0.0375896i \(-0.988032\pi\)
0.467093 0.884208i \(-0.345301\pi\)
\(174\) 0 0
\(175\) −1.00000 + 1.73205i −0.0755929 + 0.130931i
\(176\) 0.500000 0.866025i 0.0376889 0.0652791i
\(177\) 0 0
\(178\) −5.00000 8.66025i −0.374766 0.649113i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −1.00000 1.73205i −0.0741249 0.128388i
\(183\) 0 0
\(184\) 0 0
\(185\) 4.00000 6.92820i 0.294086 0.509372i
\(186\) 0 0
\(187\) −2.50000 4.33013i −0.182818 0.316650i
\(188\) 12.0000 0.875190
\(189\) 0 0
\(190\) −3.00000 −0.217643
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 6.50000 11.2583i 0.467880 0.810392i −0.531446 0.847092i \(-0.678351\pi\)
0.999326 + 0.0366998i \(0.0116845\pi\)
\(194\) −6.50000 + 11.2583i −0.466673 + 0.808301i
\(195\) 0 0
\(196\) 1.50000 + 2.59808i 0.107143 + 0.185577i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −1.00000 + 1.73205i −0.0703598 + 0.121867i
\(203\) 8.00000 13.8564i 0.561490 0.972529i
\(204\) 0 0
\(205\) 3.50000 + 6.06218i 0.244451 + 0.423401i
\(206\) 0 0
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 1.50000 + 2.59808i 0.103757 + 0.179713i
\(210\) 0 0
\(211\) 10.0000 17.3205i 0.688428 1.19239i −0.283918 0.958849i \(-0.591634\pi\)
0.972346 0.233544i \(-0.0750324\pi\)
\(212\) 1.00000 1.73205i 0.0686803 0.118958i
\(213\) 0 0
\(214\) −4.50000 7.79423i −0.307614 0.532803i
\(215\) 5.00000 0.340997
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 3.00000 + 5.19615i 0.203186 + 0.351928i
\(219\) 0 0
\(220\) 0.500000 0.866025i 0.0337100 0.0583874i
\(221\) −2.50000 + 4.33013i −0.168168 + 0.291276i
\(222\) 0 0
\(223\) 7.00000 + 12.1244i 0.468755 + 0.811907i 0.999362 0.0357107i \(-0.0113695\pi\)
−0.530607 + 0.847618i \(0.678036\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 14.0000 0.931266
\(227\) 8.50000 + 14.7224i 0.564165 + 0.977162i 0.997127 + 0.0757500i \(0.0241351\pi\)
−0.432962 + 0.901412i \(0.642532\pi\)
\(228\) 0 0
\(229\) 4.00000 6.92820i 0.264327 0.457829i −0.703060 0.711131i \(-0.748183\pi\)
0.967387 + 0.253302i \(0.0815167\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.00000 6.92820i −0.262613 0.454859i
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) −2.50000 4.33013i −0.162736 0.281867i
\(237\) 0 0
\(238\) −5.00000 + 8.66025i −0.324102 + 0.561361i
\(239\) −1.00000 + 1.73205i −0.0646846 + 0.112037i −0.896554 0.442934i \(-0.853937\pi\)
0.831869 + 0.554971i \(0.187271\pi\)
\(240\) 0 0
\(241\) 0.500000 + 0.866025i 0.0322078 + 0.0557856i 0.881680 0.471848i \(-0.156413\pi\)
−0.849472 + 0.527633i \(0.823079\pi\)
\(242\) 10.0000 0.642824
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) 1.50000 + 2.59808i 0.0958315 + 0.165985i
\(246\) 0 0
\(247\) 1.50000 2.59808i 0.0954427 0.165312i
\(248\) 3.00000 5.19615i 0.190500 0.329956i
\(249\) 0 0
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) −27.0000 −1.70422 −0.852112 0.523359i \(-0.824679\pi\)
−0.852112 + 0.523359i \(0.824679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 11.0000 + 19.0526i 0.690201 + 1.19546i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) 0 0
\(259\) 8.00000 + 13.8564i 0.497096 + 0.860995i
\(260\) −1.00000 −0.0620174
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) −2.00000 3.46410i −0.123325 0.213606i 0.797752 0.602986i \(-0.206023\pi\)
−0.921077 + 0.389380i \(0.872689\pi\)
\(264\) 0 0
\(265\) 1.00000 1.73205i 0.0614295 0.106399i
\(266\) 3.00000 5.19615i 0.183942 0.318597i
\(267\) 0 0
\(268\) 7.50000 + 12.9904i 0.458135 + 0.793514i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 2.50000 + 4.33013i 0.151585 + 0.262553i
\(273\) 0 0
\(274\) −1.50000 + 2.59808i −0.0906183 + 0.156956i
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) 0 0
\(277\) 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i \(-0.00705893\pi\)
−0.519081 + 0.854725i \(0.673726\pi\)
\(278\) −7.00000 −0.419832
\(279\) 0 0
\(280\) −2.00000 −0.119523
\(281\) −15.0000 25.9808i −0.894825 1.54988i −0.834021 0.551733i \(-0.813967\pi\)
−0.0608039 0.998150i \(-0.519366\pi\)
\(282\) 0 0
\(283\) −16.0000 + 27.7128i −0.951101 + 1.64736i −0.208053 + 0.978117i \(0.566713\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) −1.00000 + 1.73205i −0.0593391 + 0.102778i
\(285\) 0 0
\(286\) 0.500000 + 0.866025i 0.0295656 + 0.0512092i
\(287\) −14.0000 −0.826394
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) −4.00000 6.92820i −0.234888 0.406838i
\(291\) 0 0
\(292\) 5.50000 9.52628i 0.321863 0.557483i
\(293\) −1.00000 + 1.73205i −0.0584206 + 0.101187i −0.893757 0.448552i \(-0.851940\pi\)
0.835336 + 0.549740i \(0.185273\pi\)
\(294\) 0 0
\(295\) −2.50000 4.33013i −0.145556 0.252110i
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 14.0000 0.810998
\(299\) 0 0
\(300\) 0 0
\(301\) −5.00000 + 8.66025i −0.288195 + 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) −1.50000 2.59808i −0.0860309 0.149010i
\(305\) 14.0000 0.801638
\(306\) 0 0
\(307\) 9.00000 0.513657 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(308\) 1.00000 + 1.73205i 0.0569803 + 0.0986928i
\(309\) 0 0
\(310\) 3.00000 5.19615i 0.170389 0.295122i
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) −4.50000 7.79423i −0.254355 0.440556i 0.710365 0.703833i \(-0.248530\pi\)
−0.964720 + 0.263278i \(0.915197\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) −4.00000 + 6.92820i −0.223957 + 0.387905i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) −8.00000 13.8564i −0.443079 0.767435i
\(327\) 0 0
\(328\) −3.50000 + 6.06218i −0.193255 + 0.334728i
\(329\) −12.0000 + 20.7846i −0.661581 + 1.14589i
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) 8.00000 0.437741
\(335\) 7.50000 + 12.9904i 0.409769 + 0.709740i
\(336\) 0 0
\(337\) 6.50000 11.2583i 0.354078 0.613280i −0.632882 0.774248i \(-0.718128\pi\)
0.986960 + 0.160968i \(0.0514616\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 0 0
\(340\) 2.50000 + 4.33013i 0.135582 + 0.234834i
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 2.50000 + 4.33013i 0.134791 + 0.233465i
\(345\) 0 0
\(346\) 7.00000 12.1244i 0.376322 0.651809i
\(347\) −4.50000 + 7.79423i −0.241573 + 0.418416i −0.961162 0.275983i \(-0.910997\pi\)
0.719590 + 0.694399i \(0.244330\pi\)
\(348\) 0 0
\(349\) −4.00000 6.92820i −0.214115 0.370858i 0.738883 0.673833i \(-0.235353\pi\)
−0.952998 + 0.302975i \(0.902020\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −5.50000 9.52628i −0.292735 0.507033i 0.681720 0.731613i \(-0.261232\pi\)
−0.974456 + 0.224580i \(0.927899\pi\)
\(354\) 0 0
\(355\) −1.00000 + 1.73205i −0.0530745 + 0.0919277i
\(356\) 5.00000 8.66025i 0.264999 0.458993i
\(357\) 0 0
\(358\) −10.0000 17.3205i −0.528516 0.915417i
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −7.00000 12.1244i −0.367912 0.637242i
\(363\) 0 0
\(364\) 1.00000 1.73205i 0.0524142 0.0907841i
\(365\) 5.50000 9.52628i 0.287883 0.498628i
\(366\) 0 0
\(367\) 6.00000 + 10.3923i 0.313197 + 0.542474i 0.979053 0.203607i \(-0.0652665\pi\)
−0.665855 + 0.746081i \(0.731933\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 8.00000 0.415900
\(371\) 2.00000 + 3.46410i 0.103835 + 0.179847i
\(372\) 0 0
\(373\) 7.00000 12.1244i 0.362446 0.627775i −0.625917 0.779890i \(-0.715275\pi\)
0.988363 + 0.152115i \(0.0486083\pi\)
\(374\) 2.50000 4.33013i 0.129272 0.223906i
\(375\) 0 0
\(376\) 6.00000 + 10.3923i 0.309426 + 0.535942i
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 15.0000 0.770498 0.385249 0.922813i \(-0.374116\pi\)
0.385249 + 0.922813i \(0.374116\pi\)
\(380\) −1.50000 2.59808i −0.0769484 0.133278i
\(381\) 0 0
\(382\) 0 0
\(383\) 9.00000 15.5885i 0.459879 0.796533i −0.539076 0.842257i \(-0.681226\pi\)
0.998954 + 0.0457244i \(0.0145596\pi\)
\(384\) 0 0
\(385\) 1.00000 + 1.73205i 0.0509647 + 0.0882735i
\(386\) 13.0000 0.661683
\(387\) 0 0
\(388\) −13.0000 −0.659975
\(389\) −5.00000 8.66025i −0.253510 0.439092i 0.710980 0.703213i \(-0.248252\pi\)
−0.964490 + 0.264120i \(0.914918\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.50000 + 2.59808i −0.0757614 + 0.131223i
\(393\) 0 0
\(394\) −9.00000 15.5885i −0.453413 0.785335i
\(395\) 2.00000 0.100631
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 9.00000 + 15.5885i 0.451129 + 0.781379i
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) 0 0
\(403\) 3.00000 + 5.19615i 0.149441 + 0.258839i
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) 16.0000 0.794067
\(407\) −4.00000 6.92820i −0.198273 0.343418i
\(408\) 0 0
\(409\) −9.50000 + 16.4545i −0.469745 + 0.813622i −0.999402 0.0345902i \(-0.988987\pi\)
0.529657 + 0.848212i \(0.322321\pi\)
\(410\) −3.50000 + 6.06218i −0.172853 + 0.299390i
\(411\) 0 0
\(412\) 0 0
\(413\) 10.0000 0.492068
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) −1.50000 + 2.59808i −0.0733674 + 0.127076i
\(419\) −10.0000 + 17.3205i −0.488532 + 0.846162i −0.999913 0.0131919i \(-0.995801\pi\)
0.511381 + 0.859354i \(0.329134\pi\)
\(420\) 0 0
\(421\) −14.0000 24.2487i −0.682318 1.18181i −0.974272 0.225377i \(-0.927639\pi\)
0.291953 0.956433i \(-0.405695\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) 2.00000 0.0971286
\(425\) 2.50000 + 4.33013i 0.121268 + 0.210042i
\(426\) 0 0
\(427\) −14.0000 + 24.2487i −0.677507 + 1.17348i
\(428\) 4.50000 7.79423i 0.217516 0.376748i
\(429\) 0 0
\(430\) 2.50000 + 4.33013i 0.120561 + 0.208817i
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) −11.0000 −0.528626 −0.264313 0.964437i \(-0.585145\pi\)
−0.264313 + 0.964437i \(0.585145\pi\)
\(434\) 6.00000 + 10.3923i 0.288009 + 0.498847i
\(435\) 0 0
\(436\) −3.00000 + 5.19615i −0.143674 + 0.248851i
\(437\) 0 0
\(438\) 0 0
\(439\) 4.00000 + 6.92820i 0.190910 + 0.330665i 0.945552 0.325471i \(-0.105523\pi\)
−0.754642 + 0.656136i \(0.772190\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) −5.00000 −0.237826
\(443\) 0.500000 + 0.866025i 0.0237557 + 0.0411461i 0.877659 0.479286i \(-0.159104\pi\)
−0.853903 + 0.520432i \(0.825771\pi\)
\(444\) 0 0
\(445\) 5.00000 8.66025i 0.237023 0.410535i
\(446\) −7.00000 + 12.1244i −0.331460 + 0.574105i
\(447\) 0 0
\(448\) −1.00000 1.73205i −0.0472456 0.0818317i
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 7.00000 0.329617
\(452\) 7.00000 + 12.1244i 0.329252 + 0.570282i
\(453\) 0 0
\(454\) −8.50000 + 14.7224i −0.398925 + 0.690958i
\(455\) 1.00000 1.73205i 0.0468807 0.0811998i
\(456\) 0 0
\(457\) −17.5000 30.3109i −0.818615 1.41788i −0.906702 0.421771i \(-0.861409\pi\)
0.0880870 0.996113i \(-0.471925\pi\)
\(458\) 8.00000 0.373815
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) −8.00000 + 13.8564i −0.371792 + 0.643962i −0.989841 0.142177i \(-0.954590\pi\)
0.618050 + 0.786139i \(0.287923\pi\)
\(464\) 4.00000 6.92820i 0.185695 0.321634i
\(465\) 0 0
\(466\) −7.50000 12.9904i −0.347431 0.601768i
\(467\) −7.00000 −0.323921 −0.161961 0.986797i \(-0.551782\pi\)
−0.161961 + 0.986797i \(0.551782\pi\)
\(468\) 0 0
\(469\) −30.0000 −1.38527
\(470\) 6.00000 + 10.3923i 0.276759 + 0.479361i
\(471\) 0 0
\(472\) 2.50000 4.33013i 0.115072 0.199310i
\(473\) 2.50000 4.33013i 0.114950 0.199099i
\(474\) 0 0
\(475\) −1.50000 2.59808i −0.0688247 0.119208i
\(476\) −10.0000 −0.458349
\(477\) 0 0
\(478\) −2.00000 −0.0914779
\(479\) 4.00000 + 6.92820i 0.182765 + 0.316558i 0.942821 0.333300i \(-0.108162\pi\)
−0.760056 + 0.649857i \(0.774829\pi\)
\(480\) 0 0
\(481\) −4.00000 + 6.92820i −0.182384 + 0.315899i
\(482\) −0.500000 + 0.866025i −0.0227744 + 0.0394464i
\(483\) 0 0
\(484\) 5.00000 + 8.66025i 0.227273 + 0.393648i
\(485\) −13.0000 −0.590300
\(486\) 0 0
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) 7.00000 + 12.1244i 0.316875 + 0.548844i
\(489\) 0 0
\(490\) −1.50000 + 2.59808i −0.0677631 + 0.117369i
\(491\) 1.50000 2.59808i 0.0676941 0.117250i −0.830192 0.557478i \(-0.811769\pi\)
0.897886 + 0.440228i \(0.145102\pi\)
\(492\) 0 0
\(493\) −20.0000 34.6410i −0.900755 1.56015i
\(494\) 3.00000 0.134976
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) −2.00000 3.46410i −0.0897123 0.155386i
\(498\) 0 0
\(499\) −5.50000 + 9.52628i −0.246214 + 0.426455i −0.962472 0.271380i \(-0.912520\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −13.5000 23.3827i −0.602534 1.04362i
\(503\) 2.00000 0.0891756 0.0445878 0.999005i \(-0.485803\pi\)
0.0445878 + 0.999005i \(0.485803\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) −11.0000 + 19.0526i −0.488046 + 0.845321i
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 0 0
\(511\) 11.0000 + 19.0526i 0.486611 + 0.842836i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 15.0000 0.661622
\(515\) 0 0
\(516\) 0 0
\(517\) 6.00000 10.3923i 0.263880 0.457053i
\(518\) −8.00000 + 13.8564i −0.351500 + 0.608816i
\(519\) 0 0
\(520\) −0.500000 0.866025i −0.0219265 0.0379777i
\(521\) 23.0000 1.00765 0.503824 0.863806i \(-0.331926\pi\)
0.503824 + 0.863806i \(0.331926\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 2.00000 + 3.46410i 0.0873704 + 0.151330i
\(525\) 0 0
\(526\) 2.00000 3.46410i 0.0872041 0.151042i
\(527\) 15.0000 25.9808i 0.653410 1.13174i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 2.00000 0.0868744
\(531\) 0 0
\(532\) 6.00000 0.260133
\(533\) −3.50000 6.06218i −0.151602 0.262582i
\(534\) 0 0
\(535\) 4.50000 7.79423i 0.194552 0.336974i
\(536\) −7.50000 + 12.9904i −0.323951 + 0.561099i
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 8.00000 + 13.8564i 0.343629 + 0.595184i
\(543\) 0 0
\(544\) −2.50000 + 4.33013i −0.107187 + 0.185653i
\(545\) −3.00000 + 5.19615i −0.128506 + 0.222579i
\(546\) 0 0
\(547\) 11.5000 + 19.9186i 0.491704 + 0.851657i 0.999954 0.00955248i \(-0.00304070\pi\)
−0.508250 + 0.861210i \(0.669707\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) 12.0000 + 20.7846i 0.511217 + 0.885454i
\(552\) 0 0
\(553\) −2.00000 + 3.46410i −0.0850487 + 0.147309i
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) 0 0
\(556\) −3.50000 6.06218i −0.148433 0.257094i
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) −1.00000 1.73205i −0.0422577 0.0731925i
\(561\) 0 0
\(562\) 15.0000 25.9808i 0.632737 1.09593i
\(563\) 7.50000 12.9904i 0.316087 0.547479i −0.663581 0.748105i \(-0.730964\pi\)
0.979668 + 0.200625i \(0.0642974\pi\)
\(564\) 0 0
\(565\) 7.00000 + 12.1244i 0.294492 + 0.510075i
\(566\) −32.0000 −1.34506
\(567\) 0 0
\(568\) −2.00000 −0.0839181
\(569\) 22.5000 + 38.9711i 0.943249 + 1.63376i 0.759220 + 0.650835i \(0.225581\pi\)
0.184030 + 0.982921i \(0.441086\pi\)
\(570\) 0 0
\(571\) −6.50000 + 11.2583i −0.272017 + 0.471146i −0.969378 0.245573i \(-0.921024\pi\)
0.697362 + 0.716720i \(0.254357\pi\)
\(572\) −0.500000 + 0.866025i −0.0209061 + 0.0362103i
\(573\) 0 0
\(574\) −7.00000 12.1244i −0.292174 0.506061i
\(575\) 0 0
\(576\) 0 0
\(577\) 21.0000 0.874241 0.437121 0.899403i \(-0.355998\pi\)
0.437121 + 0.899403i \(0.355998\pi\)
\(578\) 4.00000 + 6.92820i 0.166378 + 0.288175i
\(579\) 0 0
\(580\) 4.00000 6.92820i 0.166091 0.287678i
\(581\) −12.0000 + 20.7846i −0.497844 + 0.862291i
\(582\) 0 0
\(583\) −1.00000 1.73205i −0.0414158 0.0717342i
\(584\) 11.0000 0.455183
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) −16.5000 28.5788i −0.681028 1.17957i −0.974668 0.223659i \(-0.928200\pi\)
0.293640 0.955916i \(-0.405133\pi\)
\(588\) 0 0
\(589\) −9.00000 + 15.5885i −0.370839 + 0.642311i
\(590\) 2.50000 4.33013i 0.102923 0.178269i
\(591\) 0 0
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) −10.0000 −0.409960
\(596\) 7.00000 + 12.1244i 0.286731 + 0.496633i
\(597\) 0 0
\(598\) 0 0
\(599\) 3.00000 5.19615i 0.122577 0.212309i −0.798206 0.602384i \(-0.794218\pi\)
0.920783 + 0.390075i \(0.127551\pi\)
\(600\) 0 0
\(601\) −9.50000 16.4545i −0.387513 0.671192i 0.604601 0.796528i \(-0.293332\pi\)
−0.992114 + 0.125336i \(0.959999\pi\)
\(602\) −10.0000 −0.407570
\(603\) 0 0
\(604\) 0 0
\(605\) 5.00000 + 8.66025i 0.203279 + 0.352089i
\(606\) 0 0
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) 1.50000 2.59808i 0.0608330 0.105366i
\(609\) 0 0
\(610\) 7.00000 + 12.1244i 0.283422 + 0.490901i
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) −4.00000 −0.161558 −0.0807792 0.996732i \(-0.525741\pi\)
−0.0807792 + 0.996732i \(0.525741\pi\)
\(614\) 4.50000 + 7.79423i 0.181605 + 0.314549i
\(615\) 0 0
\(616\) −1.00000 + 1.73205i −0.0402911 + 0.0697863i
\(617\) 4.50000 7.79423i 0.181163 0.313784i −0.761114 0.648618i \(-0.775347\pi\)
0.942277 + 0.334835i \(0.108680\pi\)
\(618\) 0 0
\(619\) 6.50000 + 11.2583i 0.261257 + 0.452510i 0.966576 0.256379i \(-0.0825296\pi\)
−0.705319 + 0.708890i \(0.749196\pi\)
\(620\) 6.00000 0.240966
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 10.0000 + 17.3205i 0.400642 + 0.693932i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 4.50000 7.79423i 0.179856 0.311520i
\(627\) 0 0
\(628\) −11.0000 19.0526i −0.438948 0.760280i
\(629\) 40.0000 1.59490
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 1.00000 + 1.73205i 0.0397779 + 0.0688973i
\(633\) 0 0
\(634\) −9.00000 + 15.5885i −0.357436 + 0.619097i
\(635\) −11.0000 + 19.0526i −0.436522 + 0.756078i
\(636\) 0 0
\(637\) −1.50000 2.59808i −0.0594322 0.102940i
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 22.5000 + 38.9711i 0.888697 + 1.53927i 0.841417 + 0.540386i \(0.181722\pi\)
0.0472793 + 0.998882i \(0.484945\pi\)
\(642\) 0 0
\(643\) 0.500000 0.866025i 0.0197181 0.0341527i −0.855998 0.516979i \(-0.827056\pi\)
0.875716 + 0.482826i \(0.160390\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −7.50000 12.9904i −0.295084 0.511100i
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 0 0
\(649\) −5.00000 −0.196267
\(650\) −0.500000 0.866025i −0.0196116 0.0339683i
\(651\) 0 0
\(652\) 8.00000 13.8564i 0.313304 0.542659i
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) 2.00000 + 3.46410i 0.0781465 + 0.135354i
\(656\) −7.00000 −0.273304
\(657\) 0 0
\(658\) −24.0000 −0.935617
\(659\) 10.0000 + 17.3205i 0.389545 + 0.674711i 0.992388 0.123148i \(-0.0392990\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(660\) 0 0
\(661\) −9.00000 + 15.5885i −0.350059 + 0.606321i −0.986260 0.165203i \(-0.947172\pi\)
0.636200 + 0.771524i \(0.280505\pi\)
\(662\) −10.0000 + 17.3205i −0.388661 + 0.673181i
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) 0 0
\(668\) 4.00000 + 6.92820i 0.154765 + 0.268060i
\(669\) 0 0
\(670\) −7.50000 + 12.9904i −0.289750 + 0.501862i
\(671\) 7.00000 12.1244i 0.270232 0.468056i
\(672\) 0 0
\(673\) 11.0000 + 19.0526i 0.424019 + 0.734422i 0.996328 0.0856156i \(-0.0272857\pi\)
−0.572309 + 0.820038i \(0.693952\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 9.00000 + 15.5885i 0.345898 + 0.599113i 0.985517 0.169580i \(-0.0542410\pi\)
−0.639618 + 0.768693i \(0.720908\pi\)
\(678\) 0 0
\(679\) 13.0000 22.5167i 0.498894 0.864110i
\(680\) −2.50000 + 4.33013i −0.0958706 + 0.166053i
\(681\) 0 0
\(682\) −3.00000 5.19615i −0.114876 0.198971i
\(683\) 5.00000 0.191320 0.0956598 0.995414i \(-0.469504\pi\)
0.0956598 + 0.995414i \(0.469504\pi\)
\(684\) 0 0
\(685\) −3.00000 −0.114624
\(686\) −10.0000 17.3205i −0.381802 0.661300i
\(687\) 0 0
\(688\) −2.50000 + 4.33013i −0.0953116 + 0.165085i
\(689\) −1.00000 + 1.73205i −0.0380970 + 0.0659859i
\(690\) 0 0
\(691\) −2.00000 3.46410i −0.0760836 0.131781i 0.825473 0.564441i \(-0.190908\pi\)
−0.901557 + 0.432660i \(0.857575\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) −9.00000 −0.341635
\(695\) −3.50000 6.06218i −0.132763 0.229952i
\(696\) 0 0
\(697\) −17.5000 + 30.3109i −0.662860 + 1.14811i
\(698\) 4.00000 6.92820i 0.151402 0.262236i
\(699\) 0 0
\(700\) −1.00000 1.73205i −0.0377964 0.0654654i
\(701\) 46.0000 1.73740 0.868698 0.495342i \(-0.164957\pi\)
0.868698 + 0.495342i \(0.164957\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 0.500000 + 0.866025i 0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) 5.50000 9.52628i 0.206995 0.358526i
\(707\) 2.00000 3.46410i 0.0752177 0.130281i
\(708\) 0 0
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) −2.00000 −0.0750587
\(711\) 0 0
\(712\) 10.0000 0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) −0.500000 + 0.866025i −0.0186989 + 0.0323875i
\(716\) 10.0000 17.3205i 0.373718 0.647298i
\(717\) 0 0
\(718\) −3.00000 5.19615i −0.111959 0.193919i
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −5.00000 8.66025i −0.186081 0.322301i
\(723\) 0 0
\(724\) 7.00000 12.1244i 0.260153 0.450598i
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) 25.0000 + 43.3013i 0.927199 + 1.60596i 0.787986 + 0.615693i \(0.211124\pi\)
0.139212 + 0.990263i \(0.455543\pi\)
\(728\) 2.00000 0.0741249
\(729\) 0 0
\(730\) 11.0000 0.407128
\(731\) 12.5000 + 21.6506i 0.462329 + 0.800778i
\(732\) 0 0
\(733\) 5.00000 8.66025i 0.184679 0.319874i −0.758789 0.651336i \(-0.774209\pi\)
0.943468 + 0.331463i \(0.107542\pi\)
\(734\) −6.00000 + 10.3923i −0.221464 + 0.383587i
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 0.552532
\(738\) 0 0
\(739\) 27.0000 0.993211 0.496606 0.867976i \(-0.334580\pi\)
0.496606 + 0.867976i \(0.334580\pi\)
\(740\) 4.00000 + 6.92820i 0.147043 + 0.254686i
\(741\) 0 0
\(742\) −2.00000 + 3.46410i −0.0734223 + 0.127171i
\(743\) −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i \(0.396261\pi\)
−0.980522 + 0.196409i \(0.937072\pi\)
\(744\) 0 0
\(745\) 7.00000 + 12.1244i 0.256460 + 0.444202i
\(746\) 14.0000 0.512576
\(747\) 0 0
\(748\) 5.00000 0.182818
\(749\) 9.00000 + 15.5885i 0.328853 + 0.569590i
\(750\) 0 0
\(751\) −7.00000 + 12.1244i −0.255434 + 0.442424i −0.965013 0.262201i \(-0.915552\pi\)
0.709580 + 0.704625i \(0.248885\pi\)
\(752\) −6.00000 + 10.3923i −0.218797 + 0.378968i
\(753\) 0 0
\(754\) 4.00000 + 6.92820i 0.145671 + 0.252310i
\(755\) 0 0
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) 7.50000 + 12.9904i 0.272412 + 0.471832i
\(759\) 0 0
\(760\) 1.50000 2.59808i 0.0544107 0.0942421i
\(761\) −1.00000 + 1.73205i −0.0362500 + 0.0627868i −0.883581 0.468278i \(-0.844875\pi\)
0.847331 + 0.531065i \(0.178208\pi\)
\(762\) 0 0
\(763\) −6.00000 10.3923i −0.217215 0.376227i
\(764\) 0 0
\(765\) 0 0
\(766\) 18.0000 0.650366
\(767\) 2.50000 + 4.33013i 0.0902698 + 0.156352i
\(768\) 0 0
\(769\) 13.0000 22.5167i 0.468792 0.811972i −0.530572 0.847640i \(-0.678023\pi\)
0.999364 + 0.0356685i \(0.0113561\pi\)
\(770\) −1.00000 + 1.73205i −0.0360375 + 0.0624188i
\(771\) 0 0
\(772\) 6.50000 + 11.2583i 0.233940 + 0.405196i
\(773\) 40.0000 1.43870 0.719350 0.694648i \(-0.244440\pi\)
0.719350 + 0.694648i \(0.244440\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) −6.50000 11.2583i −0.233336 0.404151i
\(777\) 0 0
\(778\) 5.00000 8.66025i 0.179259 0.310485i
\(779\) 10.5000 18.1865i 0.376202 0.651600i
\(780\) 0 0
\(781\) 1.00000 + 1.73205i 0.0357828 + 0.0619777i
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) −11.0000 19.0526i −0.392607 0.680015i
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 9.00000 15.5885i 0.320612 0.555316i
\(789\) 0 0
\(790\) 1.00000 + 1.73205i 0.0355784 + 0.0616236i
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) −14.0000 −0.497155
\(794\) 1.00000 + 1.73205i 0.0354887 + 0.0614682i
\(795\) 0 0
\(796\) −9.00000 + 15.5885i −0.318997 + 0.552518i
\(797\) 19.0000 32.9090i 0.673015 1.16570i −0.304030 0.952662i \(-0.598332\pi\)
0.977045 0.213033i \(-0.0683342\pi\)
\(798\) 0 0
\(799\) 30.0000 + 51.9615i 1.06132 + 1.83827i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) −5.50000 9.52628i −0.194091 0.336175i
\(804\) 0 0
\(805\) 0 0
\(806\) −3.00000 + 5.19615i −0.105670 + 0.183027i
\(807\) 0 0
\(808\) −1.00000 1.73205i −0.0351799 0.0609333i
\(809\) −5.00000 −0.175791 −0.0878953 0.996130i \(-0.528014\pi\)
−0.0878953 + 0.996130i \(0.528014\pi\)
\(810\) 0 0
\(811\) −47.0000 −1.65039 −0.825197 0.564846i \(-0.808936\pi\)
−0.825197 + 0.564846i \(0.808936\pi\)
\(812\) 8.00000 + 13.8564i 0.280745 + 0.486265i
\(813\) 0 0
\(814\) 4.00000 6.92820i 0.140200 0.242833i
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 0 0
\(817\) −7.50000 12.9904i −0.262392 0.454476i
\(818\) −19.0000 −0.664319
\(819\) 0 0
\(820\) −7.00000 −0.244451
\(821\) 4.00000 + 6.92820i 0.139601 + 0.241796i 0.927346 0.374206i \(-0.122085\pi\)
−0.787745 + 0.616002i \(0.788751\pi\)
\(822\) 0 0
\(823\) −4.00000 + 6.92820i −0.139431 + 0.241502i −0.927281 0.374365i \(-0.877861\pi\)
0.787850 + 0.615867i \(0.211194\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 5.00000 + 8.66025i 0.173972 + 0.301329i
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 6.00000 + 10.3923i 0.208263 + 0.360722i
\(831\) 0 0
\(832\) 0.500000 0.866025i 0.0173344 0.0300240i
\(833\) −7.50000 + 12.9904i −0.259860 + 0.450090i
\(834\) 0 0
\(835\) 4.00000 + 6.92820i 0.138426 + 0.239760i
\(836\) −3.00000 −0.103757
\(837\) 0 0
\(838\) −20.0000 −0.690889
\(839\) −8.00000 13.8564i −0.276191 0.478376i 0.694244 0.719740i \(-0.255739\pi\)
−0.970435 + 0.241363i \(0.922405\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) 14.0000 24.2487i 0.482472 0.835666i
\(843\) 0 0
\(844\) 10.0000 + 17.3205i 0.344214 + 0.596196i
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) −20.0000 −0.687208
\(848\) 1.00000 + 1.73205i 0.0343401 + 0.0594789i
\(849\) 0 0
\(850\) −2.50000 + 4.33013i −0.0857493 + 0.148522i
\(851\) 0 0
\(852\) 0 0
\(853\) −8.00000 13.8564i −0.273915 0.474434i 0.695946 0.718094i \(-0.254985\pi\)
−0.969861 + 0.243660i \(0.921652\pi\)
\(854\) −28.0000 −0.958140
\(855\) 0 0
\(856\) 9.00000 0.307614
\(857\) −13.0000 22.5167i −0.444072 0.769154i 0.553915 0.832573i \(-0.313133\pi\)
−0.997987 + 0.0634184i \(0.979800\pi\)
\(858\) 0 0
\(859\) −22.5000 + 38.9711i −0.767690 + 1.32968i 0.171122 + 0.985250i \(0.445261\pi\)
−0.938813 + 0.344428i \(0.888073\pi\)
\(860\) −2.50000 + 4.33013i −0.0852493 + 0.147656i
\(861\) 0 0
\(862\) −6.00000 10.3923i −0.204361 0.353963i
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) −5.50000 9.52628i −0.186898 0.323716i
\(867\) 0 0
\(868\) −6.00000 + 10.3923i −0.203653 + 0.352738i
\(869\) 1.00000 1.73205i 0.0339227 0.0587558i
\(870\) 0 0
\(871\) −7.50000 12.9904i −0.254128 0.440162i
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 0 0
\(875\) −1.00000 1.73205i −0.0338062 0.0585540i
\(876\) 0 0
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) −4.00000 + 6.92820i −0.134993 + 0.233816i
\(879\) 0 0
\(880\) 0.500000 + 0.866025i 0.0168550 + 0.0291937i
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) 35.0000 1.17784 0.588922 0.808190i \(-0.299553\pi\)
0.588922 + 0.808190i \(0.299553\pi\)
\(884\) −2.50000 4.33013i −0.0840841 0.145638i
\(885\) 0 0
\(886\) −0.500000 + 0.866025i −0.0167978 + 0.0290947i
\(887\) 2.00000 3.46410i 0.0671534 0.116313i −0.830494 0.557028i \(-0.811942\pi\)
0.897647 + 0.440715i \(0.145275\pi\)
\(888\) 0 0
\(889\) −22.0000 38.1051i −0.737856 1.27800i
\(890\) 10.0000 0.335201
\(891\) 0 0
\(892\) −14.0000 −0.468755
\(893\) −18.0000 31.1769i −0.602347 1.04330i
\(894\) 0 0
\(895\) 10.0000 17.3205i 0.334263 0.578961i
\(896\) 1.00000 1.73205i 0.0334077 0.0578638i
\(897\) 0 0
\(898\) 4.50000 + 7.79423i 0.150167 + 0.260097i
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 10.0000 0.333148
\(902\) 3.50000 + 6.06218i 0.116537 + 0.201848i
\(903\) 0 0
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) 7.00000 12.1244i 0.232688 0.403027i
\(906\) 0 0
\(907\) 8.50000 + 14.7224i 0.282238 + 0.488850i 0.971936 0.235247i \(-0.0755899\pi\)
−0.689698 + 0.724097i \(0.742257\pi\)
\(908\) −17.0000 −0.564165
\(909\) 0 0
\(910\) 2.00000 0.0662994
\(911\) −16.0000 27.7128i −0.530104 0.918166i −0.999383 0.0351168i \(-0.988820\pi\)
0.469280 0.883050i \(-0.344514\pi\)
\(912\) 0 0
\(913\) 6.00000 10.3923i 0.198571 0.343935i
\(914\) 17.5000 30.3109i 0.578849 1.00260i
\(915\) 0 0
\(916\) 4.00000 + 6.92820i 0.132164 + 0.228914i
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.00000 1.73205i 0.0329154 0.0570111i
\(924\) 0 0
\(925\) 4.00000 + 6.92820i 0.131519 + 0.227798i
\(926\) −16.0000 −0.525793
\(927\) 0 0
\(928\) 8.00000 0.262613
\(929\) 15.0000 + 25.9808i 0.492134 + 0.852401i 0.999959 0.00905914i \(-0.00288365\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(930\) 0 0
\(931\) 4.50000 7.79423i 0.147482 0.255446i
\(932\) 7.50000 12.9904i 0.245671 0.425514i
\(933\) 0 0
\(934\) −3.50000 6.06218i −0.114523 0.198361i
\(935\) 5.00000 0.163517
\(936\) 0 0
\(937\) −54.0000 −1.76410 −0.882052 0.471153i \(-0.843838\pi\)
−0.882052 + 0.471153i \(0.843838\pi\)
\(938\) −15.0000 25.9808i −0.489767 0.848302i
\(939\) 0 0
\(940\) −6.00000 + 10.3923i −0.195698 + 0.338960i
\(941\) 19.0000 32.9090i 0.619382 1.07280i −0.370216 0.928946i \(-0.620716\pi\)
0.989599 0.143856i \(-0.0459502\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 5.00000 0.162736
\(945\) 0 0
\(946\) 5.00000 0.162564
\(947\) 21.5000 + 37.2391i 0.698656 + 1.21011i 0.968933 + 0.247325i \(0.0795516\pi\)
−0.270276 + 0.962783i \(0.587115\pi\)
\(948\) 0 0
\(949\) −5.50000 + 9.52628i −0.178538 + 0.309236i
\(950\) 1.50000 2.59808i 0.0486664 0.0842927i
\(951\) 0 0
\(952\) −5.00000 8.66025i −0.162051 0.280680i
\(953\) −57.0000 −1.84641 −0.923206 0.384307i \(-0.874441\pi\)
−0.923206 + 0.384307i \(0.874441\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.00000 1.73205i −0.0323423 0.0560185i
\(957\) 0 0
\(958\) −4.00000 + 6.92820i −0.129234 + 0.223840i
\(959\) 3.00000 5.19615i 0.0968751 0.167793i
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) −8.00000 −0.257930
\(963\) 0 0
\(964\) −1.00000 −0.0322078
\(965\) 6.50000 + 11.2583i 0.209242 + 0.362418i
\(966\) 0 0
\(967\) −8.00000 + 13.8564i −0.257263 + 0.445592i −0.965508 0.260375i \(-0.916154\pi\)
0.708245 + 0.705967i \(0.249487\pi\)
\(968\) −5.00000 + 8.66025i −0.160706 + 0.278351i
\(969\) 0 0
\(970\) −6.50000 11.2583i −0.208702 0.361483i
\(971\) 16.0000 0.513464 0.256732 0.966483i \(-0.417354\pi\)
0.256732 + 0.966483i \(0.417354\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) −17.0000 29.4449i −0.544715 0.943474i
\(975\) 0 0
\(976\) −7.00000 + 12.1244i −0.224065 + 0.388091i
\(977\) 1.50000 2.59808i 0.0479893 0.0831198i −0.841033 0.540984i \(-0.818052\pi\)
0.889022 + 0.457864i \(0.151385\pi\)
\(978\) 0 0
\(979\) −5.00000 8.66025i −0.159801 0.276783i
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) 3.00000 0.0957338
\(983\) −14.0000 24.2487i −0.446531 0.773414i 0.551627 0.834091i \(-0.314007\pi\)
−0.998157 + 0.0606773i \(0.980674\pi\)
\(984\) 0 0
\(985\) 9.00000 15.5885i 0.286764 0.496690i
\(986\) 20.0000 34.6410i 0.636930 1.10319i
\(987\) 0 0
\(988\) 1.50000 + 2.59808i 0.0477214 + 0.0826558i
\(989\) 0 0
\(990\) 0 0
\(991\) −30.0000 −0.952981 −0.476491 0.879180i \(-0.658091\pi\)
−0.476491 + 0.879180i \(0.658091\pi\)
\(992\) 3.00000 + 5.19615i 0.0952501 + 0.164978i
\(993\) 0 0
\(994\) 2.00000 3.46410i 0.0634361 0.109875i
\(995\) −9.00000 + 15.5885i −0.285319 + 0.494187i
\(996\) 0 0
\(997\) 28.0000 + 48.4974i 0.886769 + 1.53593i 0.843673 + 0.536858i \(0.180389\pi\)
0.0430962 + 0.999071i \(0.486278\pi\)
\(998\) −11.0000 −0.348199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3510.2.j.e.1171.1 2
3.2 odd 2 1170.2.j.c.391.1 2
9.2 odd 6 1170.2.j.c.781.1 yes 2
9.7 even 3 inner 3510.2.j.e.2341.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.j.c.391.1 2 3.2 odd 2
1170.2.j.c.781.1 yes 2 9.2 odd 6
3510.2.j.e.1171.1 2 1.1 even 1 trivial
3510.2.j.e.2341.1 2 9.7 even 3 inner