Properties

Label 3510.2.j
Level $3510$
Weight $2$
Character orbit 3510.j
Rep. character $\chi_{3510}(1171,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $96$
Newform subspaces $14$
Sturm bound $1512$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3510 = 2 \cdot 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3510.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 14 \)
Sturm bound: \(1512\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3510, [\chi])\).

Total New Old
Modular forms 1560 96 1464
Cusp forms 1464 96 1368
Eisenstein series 96 0 96

Trace form

\( 96 q + 4 q^{2} - 48 q^{4} + 4 q^{5} - 8 q^{8} - 4 q^{11} - 4 q^{14} - 48 q^{16} + 8 q^{17} - 24 q^{19} + 4 q^{20} + 12 q^{22} - 24 q^{23} - 48 q^{25} - 4 q^{29} + 4 q^{32} + 12 q^{34} - 4 q^{38} + 40 q^{41}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3510, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3510.2.j.a 3510.j 9.c $2$ $28.027$ \(\Q(\sqrt{-3}) \) None 1170.2.j.f \(-1\) \(0\) \(-1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(1+\cdots)q^{7}+\cdots\)
3510.2.j.b 3510.j 9.c $2$ $28.027$ \(\Q(\sqrt{-3}) \) None 1170.2.j.d \(-1\) \(0\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(3+\cdots)q^{7}+\cdots\)
3510.2.j.c 3510.j 9.c $2$ $28.027$ \(\Q(\sqrt{-3}) \) None 1170.2.j.e \(-1\) \(0\) \(1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
3510.2.j.d 3510.j 9.c $2$ $28.027$ \(\Q(\sqrt{-3}) \) None 1170.2.j.a \(1\) \(0\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(-5+\cdots)q^{7}+\cdots\)
3510.2.j.e 3510.j 9.c $2$ $28.027$ \(\Q(\sqrt{-3}) \) None 1170.2.j.c \(1\) \(0\) \(-1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(-2+\cdots)q^{7}+\cdots\)
3510.2.j.f 3510.j 9.c $2$ $28.027$ \(\Q(\sqrt{-3}) \) None 1170.2.j.b \(1\) \(0\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+\cdots\)
3510.2.j.g 3510.j 9.c $4$ $28.027$ \(\Q(\zeta_{12})\) None 1170.2.j.g \(-2\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_1 q^{2}+(\beta_1-1)q^{4}+(\beta_1-1)q^{5}+\cdots\)
3510.2.j.h 3510.j 9.c $8$ $28.027$ 8.0.856615824.2 None 1170.2.j.h \(4\) \(0\) \(-4\) \(7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1})q^{2}-\beta _{1}q^{4}-\beta _{1}q^{5}+(2-2\beta _{1}+\cdots)q^{7}+\cdots\)
3510.2.j.i 3510.j 9.c $10$ $28.027$ 10.0.\(\cdots\).1 None 1170.2.j.j \(-5\) \(0\) \(5\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{5}q^{2}+(-1-\beta _{5})q^{4}+(1+\beta _{5})q^{5}+\cdots\)
3510.2.j.j 3510.j 9.c $10$ $28.027$ 10.0.\(\cdots\).1 None 1170.2.j.i \(5\) \(0\) \(-5\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1})q^{2}-\beta _{1}q^{4}-\beta _{1}q^{5}+(-1+\cdots)q^{7}+\cdots\)
3510.2.j.k 3510.j 9.c $12$ $28.027$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1170.2.j.l \(-6\) \(0\) \(-6\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}+(-1+\beta _{3})q^{4}+(-1+\beta _{3}+\cdots)q^{5}+\cdots\)
3510.2.j.l 3510.j 9.c $12$ $28.027$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1170.2.j.m \(-6\) \(0\) \(6\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{4}q^{2}+(-1-\beta _{4})q^{4}+(1+\beta _{4})q^{5}+\cdots\)
3510.2.j.m 3510.j 9.c $12$ $28.027$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1170.2.j.k \(6\) \(0\) \(6\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(-1-\beta _{4})q^{4}+(1+\beta _{4})q^{5}+\cdots\)
3510.2.j.n 3510.j 9.c $16$ $28.027$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1170.2.j.n \(8\) \(0\) \(8\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{3})q^{2}+\beta _{3}q^{4}-\beta _{3}q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3510, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3510, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(351, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(702, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1755, [\chi])\)\(^{\oplus 2}\)