Properties

Label 1170.2.j.c.781.1
Level $1170$
Weight $2$
Character 1170.781
Analytic conductor $9.342$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(391,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.391"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 781.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1170.781
Dual form 1170.2.j.c.391.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-1.50000 + 0.866025i) q^{6} +(-1.00000 + 1.73205i) q^{7} +1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} -1.00000 q^{10} +(-0.500000 + 0.866025i) q^{11} -1.73205i q^{12} +(0.500000 + 0.866025i) q^{13} +(-1.00000 - 1.73205i) q^{14} +1.73205i q^{15} +(-0.500000 + 0.866025i) q^{16} +5.00000 q^{17} -3.00000 q^{18} +3.00000 q^{19} +(0.500000 - 0.866025i) q^{20} +(-3.00000 + 1.73205i) q^{21} +(-0.500000 - 0.866025i) q^{22} +(1.50000 + 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{26} +5.19615i q^{27} +2.00000 q^{28} +(-4.00000 + 6.92820i) q^{29} +(-1.50000 - 0.866025i) q^{30} +(-3.00000 - 5.19615i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.50000 + 0.866025i) q^{33} +(-2.50000 + 4.33013i) q^{34} -2.00000 q^{35} +(1.50000 - 2.59808i) q^{36} -8.00000 q^{37} +(-1.50000 + 2.59808i) q^{38} +1.73205i q^{39} +(0.500000 + 0.866025i) q^{40} +(-3.50000 - 6.06218i) q^{41} -3.46410i q^{42} +(-2.50000 + 4.33013i) q^{43} +1.00000 q^{44} +(-1.50000 + 2.59808i) q^{45} +(6.00000 - 10.3923i) q^{47} +(-1.50000 + 0.866025i) q^{48} +(1.50000 + 2.59808i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(7.50000 + 4.33013i) q^{51} +(0.500000 - 0.866025i) q^{52} +2.00000 q^{53} +(-4.50000 - 2.59808i) q^{54} -1.00000 q^{55} +(-1.00000 + 1.73205i) q^{56} +(4.50000 + 2.59808i) q^{57} +(-4.00000 - 6.92820i) q^{58} +(2.50000 + 4.33013i) q^{59} +(1.50000 - 0.866025i) q^{60} +(-7.00000 + 12.1244i) q^{61} +6.00000 q^{62} -6.00000 q^{63} +1.00000 q^{64} +(-0.500000 + 0.866025i) q^{65} -1.73205i q^{66} +(7.50000 + 12.9904i) q^{67} +(-2.50000 - 4.33013i) q^{68} +(1.00000 - 1.73205i) q^{70} -2.00000 q^{71} +(1.50000 + 2.59808i) q^{72} -11.0000 q^{73} +(4.00000 - 6.92820i) q^{74} +(-1.50000 + 0.866025i) q^{75} +(-1.50000 - 2.59808i) q^{76} +(-1.00000 - 1.73205i) q^{77} +(-1.50000 - 0.866025i) q^{78} +(-1.00000 + 1.73205i) q^{79} -1.00000 q^{80} +(-4.50000 + 7.79423i) q^{81} +7.00000 q^{82} +(6.00000 - 10.3923i) q^{83} +(3.00000 + 1.73205i) q^{84} +(2.50000 + 4.33013i) q^{85} +(-2.50000 - 4.33013i) q^{86} +(-12.0000 + 6.92820i) q^{87} +(-0.500000 + 0.866025i) q^{88} +10.0000 q^{89} +(-1.50000 - 2.59808i) q^{90} -2.00000 q^{91} -10.3923i q^{93} +(6.00000 + 10.3923i) q^{94} +(1.50000 + 2.59808i) q^{95} -1.73205i q^{96} +(6.50000 - 11.2583i) q^{97} -3.00000 q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 3 q^{3} - q^{4} + q^{5} - 3 q^{6} - 2 q^{7} + 2 q^{8} + 3 q^{9} - 2 q^{10} - q^{11} + q^{13} - 2 q^{14} - q^{16} + 10 q^{17} - 6 q^{18} + 6 q^{19} + q^{20} - 6 q^{21} - q^{22} + 3 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) −1.00000 + 1.73205i −0.377964 + 0.654654i −0.990766 0.135583i \(-0.956709\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) −1.00000 −0.316228
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i −0.931505 0.363727i \(-0.881504\pi\)
0.780750 + 0.624844i \(0.214837\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) −1.00000 1.73205i −0.267261 0.462910i
\(15\) 1.73205i 0.447214i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) −3.00000 −0.707107
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) 0.500000 0.866025i 0.111803 0.193649i
\(21\) −3.00000 + 1.73205i −0.654654 + 0.377964i
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −1.00000 −0.196116
\(27\) 5.19615i 1.00000i
\(28\) 2.00000 0.377964
\(29\) −4.00000 + 6.92820i −0.742781 + 1.28654i 0.208443 + 0.978035i \(0.433160\pi\)
−0.951224 + 0.308500i \(0.900173\pi\)
\(30\) −1.50000 0.866025i −0.273861 0.158114i
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.50000 + 0.866025i −0.261116 + 0.150756i
\(34\) −2.50000 + 4.33013i −0.428746 + 0.742611i
\(35\) −2.00000 −0.338062
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) −1.50000 + 2.59808i −0.243332 + 0.421464i
\(39\) 1.73205i 0.277350i
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) −3.50000 6.06218i −0.546608 0.946753i −0.998504 0.0546823i \(-0.982585\pi\)
0.451896 0.892071i \(-0.350748\pi\)
\(42\) 3.46410i 0.534522i
\(43\) −2.50000 + 4.33013i −0.381246 + 0.660338i −0.991241 0.132068i \(-0.957838\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 1.00000 0.150756
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) 6.00000 10.3923i 0.875190 1.51587i 0.0186297 0.999826i \(-0.494070\pi\)
0.856560 0.516047i \(-0.172597\pi\)
\(48\) −1.50000 + 0.866025i −0.216506 + 0.125000i
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 7.50000 + 4.33013i 1.05021 + 0.606339i
\(52\) 0.500000 0.866025i 0.0693375 0.120096i
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) −4.50000 2.59808i −0.612372 0.353553i
\(55\) −1.00000 −0.134840
\(56\) −1.00000 + 1.73205i −0.133631 + 0.231455i
\(57\) 4.50000 + 2.59808i 0.596040 + 0.344124i
\(58\) −4.00000 6.92820i −0.525226 0.909718i
\(59\) 2.50000 + 4.33013i 0.325472 + 0.563735i 0.981608 0.190909i \(-0.0611434\pi\)
−0.656136 + 0.754643i \(0.727810\pi\)
\(60\) 1.50000 0.866025i 0.193649 0.111803i
\(61\) −7.00000 + 12.1244i −0.896258 + 1.55236i −0.0640184 + 0.997949i \(0.520392\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 6.00000 0.762001
\(63\) −6.00000 −0.755929
\(64\) 1.00000 0.125000
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 1.73205i 0.213201i
\(67\) 7.50000 + 12.9904i 0.916271 + 1.58703i 0.805030 + 0.593234i \(0.202149\pi\)
0.111241 + 0.993793i \(0.464517\pi\)
\(68\) −2.50000 4.33013i −0.303170 0.525105i
\(69\) 0 0
\(70\) 1.00000 1.73205i 0.119523 0.207020i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) −1.50000 + 0.866025i −0.173205 + 0.100000i
\(76\) −1.50000 2.59808i −0.172062 0.298020i
\(77\) −1.00000 1.73205i −0.113961 0.197386i
\(78\) −1.50000 0.866025i −0.169842 0.0980581i
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) −1.00000 −0.111803
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 7.00000 0.773021
\(83\) 6.00000 10.3923i 0.658586 1.14070i −0.322396 0.946605i \(-0.604488\pi\)
0.980982 0.194099i \(-0.0621783\pi\)
\(84\) 3.00000 + 1.73205i 0.327327 + 0.188982i
\(85\) 2.50000 + 4.33013i 0.271163 + 0.469668i
\(86\) −2.50000 4.33013i −0.269582 0.466930i
\(87\) −12.0000 + 6.92820i −1.28654 + 0.742781i
\(88\) −0.500000 + 0.866025i −0.0533002 + 0.0923186i
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) −1.50000 2.59808i −0.158114 0.273861i
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 10.3923i 1.07763i
\(94\) 6.00000 + 10.3923i 0.618853 + 1.07188i
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) 1.73205i 0.176777i
\(97\) 6.50000 11.2583i 0.659975 1.14311i −0.320647 0.947199i \(-0.603900\pi\)
0.980622 0.195911i \(-0.0627665\pi\)
\(98\) −3.00000 −0.303046
\(99\) −3.00000 −0.301511
\(100\) 1.00000 0.100000
\(101\) −1.00000 + 1.73205i −0.0995037 + 0.172345i −0.911479 0.411346i \(-0.865059\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(102\) −7.50000 + 4.33013i −0.742611 + 0.428746i
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0.500000 + 0.866025i 0.0490290 + 0.0849208i
\(105\) −3.00000 1.73205i −0.292770 0.169031i
\(106\) −1.00000 + 1.73205i −0.0971286 + 0.168232i
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0.500000 0.866025i 0.0476731 0.0825723i
\(111\) −12.0000 6.92820i −1.13899 0.657596i
\(112\) −1.00000 1.73205i −0.0944911 0.163663i
\(113\) −7.00000 12.1244i −0.658505 1.14056i −0.981003 0.193993i \(-0.937856\pi\)
0.322498 0.946570i \(-0.395477\pi\)
\(114\) −4.50000 + 2.59808i −0.421464 + 0.243332i
\(115\) 0 0
\(116\) 8.00000 0.742781
\(117\) −1.50000 + 2.59808i −0.138675 + 0.240192i
\(118\) −5.00000 −0.460287
\(119\) −5.00000 + 8.66025i −0.458349 + 0.793884i
\(120\) 1.73205i 0.158114i
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) −7.00000 12.1244i −0.633750 1.09769i
\(123\) 12.1244i 1.09322i
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) −1.00000 −0.0894427
\(126\) 3.00000 5.19615i 0.267261 0.462910i
\(127\) 22.0000 1.95218 0.976092 0.217357i \(-0.0697436\pi\)
0.976092 + 0.217357i \(0.0697436\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −7.50000 + 4.33013i −0.660338 + 0.381246i
\(130\) −0.500000 0.866025i −0.0438529 0.0759555i
\(131\) −2.00000 3.46410i −0.174741 0.302660i 0.765331 0.643637i \(-0.222575\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(132\) 1.50000 + 0.866025i 0.130558 + 0.0753778i
\(133\) −3.00000 + 5.19615i −0.260133 + 0.450564i
\(134\) −15.0000 −1.29580
\(135\) −4.50000 + 2.59808i −0.387298 + 0.223607i
\(136\) 5.00000 0.428746
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 1.00000 + 1.73205i 0.0845154 + 0.146385i
\(141\) 18.0000 10.3923i 1.51587 0.875190i
\(142\) 1.00000 1.73205i 0.0839181 0.145350i
\(143\) −1.00000 −0.0836242
\(144\) −3.00000 −0.250000
\(145\) −8.00000 −0.664364
\(146\) 5.50000 9.52628i 0.455183 0.788400i
\(147\) 5.19615i 0.428571i
\(148\) 4.00000 + 6.92820i 0.328798 + 0.569495i
\(149\) −7.00000 12.1244i −0.573462 0.993266i −0.996207 0.0870170i \(-0.972267\pi\)
0.422744 0.906249i \(-0.361067\pi\)
\(150\) 1.73205i 0.141421i
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 3.00000 0.243332
\(153\) 7.50000 + 12.9904i 0.606339 + 1.05021i
\(154\) 2.00000 0.161165
\(155\) 3.00000 5.19615i 0.240966 0.417365i
\(156\) 1.50000 0.866025i 0.120096 0.0693375i
\(157\) −11.0000 19.0526i −0.877896 1.52056i −0.853646 0.520854i \(-0.825614\pi\)
−0.0242497 0.999706i \(-0.507720\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 3.00000 + 1.73205i 0.237915 + 0.137361i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 0 0
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) −3.50000 + 6.06218i −0.273304 + 0.473377i
\(165\) −1.50000 0.866025i −0.116775 0.0674200i
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −4.00000 6.92820i −0.309529 0.536120i 0.668730 0.743505i \(-0.266838\pi\)
−0.978259 + 0.207385i \(0.933505\pi\)
\(168\) −3.00000 + 1.73205i −0.231455 + 0.133631i
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) −5.00000 −0.383482
\(171\) 4.50000 + 7.79423i 0.344124 + 0.596040i
\(172\) 5.00000 0.381246
\(173\) 7.00000 12.1244i 0.532200 0.921798i −0.467093 0.884208i \(-0.654699\pi\)
0.999293 0.0375896i \(-0.0119679\pi\)
\(174\) 13.8564i 1.05045i
\(175\) −1.00000 1.73205i −0.0755929 0.130931i
\(176\) −0.500000 0.866025i −0.0376889 0.0652791i
\(177\) 8.66025i 0.650945i
\(178\) −5.00000 + 8.66025i −0.374766 + 0.649113i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 3.00000 0.223607
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 1.00000 1.73205i 0.0741249 0.128388i
\(183\) −21.0000 + 12.1244i −1.55236 + 0.896258i
\(184\) 0 0
\(185\) −4.00000 6.92820i −0.294086 0.509372i
\(186\) 9.00000 + 5.19615i 0.659912 + 0.381000i
\(187\) −2.50000 + 4.33013i −0.182818 + 0.316650i
\(188\) −12.0000 −0.875190
\(189\) −9.00000 5.19615i −0.654654 0.377964i
\(190\) −3.00000 −0.217643
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 1.50000 + 0.866025i 0.108253 + 0.0625000i
\(193\) 6.50000 + 11.2583i 0.467880 + 0.810392i 0.999326 0.0366998i \(-0.0116845\pi\)
−0.531446 + 0.847092i \(0.678351\pi\)
\(194\) 6.50000 + 11.2583i 0.466673 + 0.808301i
\(195\) −1.50000 + 0.866025i −0.107417 + 0.0620174i
\(196\) 1.50000 2.59808i 0.107143 0.185577i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 1.50000 2.59808i 0.106600 0.184637i
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 25.9808i 1.83254i
\(202\) −1.00000 1.73205i −0.0703598 0.121867i
\(203\) −8.00000 13.8564i −0.561490 0.972529i
\(204\) 8.66025i 0.606339i
\(205\) 3.50000 6.06218i 0.244451 0.423401i
\(206\) 0 0
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −1.50000 + 2.59808i −0.103757 + 0.179713i
\(210\) 3.00000 1.73205i 0.207020 0.119523i
\(211\) 10.0000 + 17.3205i 0.688428 + 1.19239i 0.972346 + 0.233544i \(0.0750324\pi\)
−0.283918 + 0.958849i \(0.591634\pi\)
\(212\) −1.00000 1.73205i −0.0686803 0.118958i
\(213\) −3.00000 1.73205i −0.205557 0.118678i
\(214\) −4.50000 + 7.79423i −0.307614 + 0.532803i
\(215\) −5.00000 −0.340997
\(216\) 5.19615i 0.353553i
\(217\) 12.0000 0.814613
\(218\) −3.00000 + 5.19615i −0.203186 + 0.351928i
\(219\) −16.5000 9.52628i −1.11497 0.643726i
\(220\) 0.500000 + 0.866025i 0.0337100 + 0.0583874i
\(221\) 2.50000 + 4.33013i 0.168168 + 0.291276i
\(222\) 12.0000 6.92820i 0.805387 0.464991i
\(223\) 7.00000 12.1244i 0.468755 0.811907i −0.530607 0.847618i \(-0.678036\pi\)
0.999362 + 0.0357107i \(0.0113695\pi\)
\(224\) 2.00000 0.133631
\(225\) −3.00000 −0.200000
\(226\) 14.0000 0.931266
\(227\) −8.50000 + 14.7224i −0.564165 + 0.977162i 0.432962 + 0.901412i \(0.357468\pi\)
−0.997127 + 0.0757500i \(0.975865\pi\)
\(228\) 5.19615i 0.344124i
\(229\) 4.00000 + 6.92820i 0.264327 + 0.457829i 0.967387 0.253302i \(-0.0815167\pi\)
−0.703060 + 0.711131i \(0.748183\pi\)
\(230\) 0 0
\(231\) 3.46410i 0.227921i
\(232\) −4.00000 + 6.92820i −0.262613 + 0.454859i
\(233\) 15.0000 0.982683 0.491341 0.870967i \(-0.336507\pi\)
0.491341 + 0.870967i \(0.336507\pi\)
\(234\) −1.50000 2.59808i −0.0980581 0.169842i
\(235\) 12.0000 0.782794
\(236\) 2.50000 4.33013i 0.162736 0.281867i
\(237\) −3.00000 + 1.73205i −0.194871 + 0.112509i
\(238\) −5.00000 8.66025i −0.324102 0.561361i
\(239\) 1.00000 + 1.73205i 0.0646846 + 0.112037i 0.896554 0.442934i \(-0.146063\pi\)
−0.831869 + 0.554971i \(0.812729\pi\)
\(240\) −1.50000 0.866025i −0.0968246 0.0559017i
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) −10.0000 −0.642824
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) 14.0000 0.896258
\(245\) −1.50000 + 2.59808i −0.0958315 + 0.165985i
\(246\) 10.5000 + 6.06218i 0.669456 + 0.386510i
\(247\) 1.50000 + 2.59808i 0.0954427 + 0.165312i
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) 18.0000 10.3923i 1.14070 0.658586i
\(250\) 0.500000 0.866025i 0.0316228 0.0547723i
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 3.00000 + 5.19615i 0.188982 + 0.327327i
\(253\) 0 0
\(254\) −11.0000 + 19.0526i −0.690201 + 1.19546i
\(255\) 8.66025i 0.542326i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.50000 12.9904i −0.467837 0.810318i 0.531487 0.847066i \(-0.321633\pi\)
−0.999325 + 0.0367485i \(0.988300\pi\)
\(258\) 8.66025i 0.539164i
\(259\) 8.00000 13.8564i 0.497096 0.860995i
\(260\) 1.00000 0.0620174
\(261\) −24.0000 −1.48556
\(262\) 4.00000 0.247121
\(263\) 2.00000 3.46410i 0.123325 0.213606i −0.797752 0.602986i \(-0.793977\pi\)
0.921077 + 0.389380i \(0.127311\pi\)
\(264\) −1.50000 + 0.866025i −0.0923186 + 0.0533002i
\(265\) 1.00000 + 1.73205i 0.0614295 + 0.106399i
\(266\) −3.00000 5.19615i −0.183942 0.318597i
\(267\) 15.0000 + 8.66025i 0.917985 + 0.529999i
\(268\) 7.50000 12.9904i 0.458135 0.793514i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 5.19615i 0.316228i
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −2.50000 + 4.33013i −0.151585 + 0.262553i
\(273\) −3.00000 1.73205i −0.181568 0.104828i
\(274\) −1.50000 2.59808i −0.0906183 0.156956i
\(275\) −0.500000 0.866025i −0.0301511 0.0522233i
\(276\) 0 0
\(277\) 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i \(-0.673726\pi\)
0.999754 + 0.0221745i \(0.00705893\pi\)
\(278\) 7.00000 0.419832
\(279\) 9.00000 15.5885i 0.538816 0.933257i
\(280\) −2.00000 −0.119523
\(281\) 15.0000 25.9808i 0.894825 1.54988i 0.0608039 0.998150i \(-0.480634\pi\)
0.834021 0.551733i \(-0.186033\pi\)
\(282\) 20.7846i 1.23771i
\(283\) −16.0000 27.7128i −0.951101 1.64736i −0.743048 0.669238i \(-0.766621\pi\)
−0.208053 0.978117i \(-0.566713\pi\)
\(284\) 1.00000 + 1.73205i 0.0593391 + 0.102778i
\(285\) 5.19615i 0.307794i
\(286\) 0.500000 0.866025i 0.0295656 0.0512092i
\(287\) 14.0000 0.826394
\(288\) 1.50000 2.59808i 0.0883883 0.153093i
\(289\) 8.00000 0.470588
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 19.5000 11.2583i 1.14311 0.659975i
\(292\) 5.50000 + 9.52628i 0.321863 + 0.557483i
\(293\) 1.00000 + 1.73205i 0.0584206 + 0.101187i 0.893757 0.448552i \(-0.148060\pi\)
−0.835336 + 0.549740i \(0.814727\pi\)
\(294\) −4.50000 2.59808i −0.262445 0.151523i
\(295\) −2.50000 + 4.33013i −0.145556 + 0.252110i
\(296\) −8.00000 −0.464991
\(297\) −4.50000 2.59808i −0.261116 0.150756i
\(298\) 14.0000 0.810998
\(299\) 0 0
\(300\) 1.50000 + 0.866025i 0.0866025 + 0.0500000i
\(301\) −5.00000 8.66025i −0.288195 0.499169i
\(302\) 0 0
\(303\) −3.00000 + 1.73205i −0.172345 + 0.0995037i
\(304\) −1.50000 + 2.59808i −0.0860309 + 0.149010i
\(305\) −14.0000 −0.801638
\(306\) −15.0000 −0.857493
\(307\) 9.00000 0.513657 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(308\) −1.00000 + 1.73205i −0.0569803 + 0.0986928i
\(309\) 0 0
\(310\) 3.00000 + 5.19615i 0.170389 + 0.295122i
\(311\) 12.0000 + 20.7846i 0.680458 + 1.17859i 0.974841 + 0.222900i \(0.0715523\pi\)
−0.294384 + 0.955687i \(0.595114\pi\)
\(312\) 1.73205i 0.0980581i
\(313\) −4.50000 + 7.79423i −0.254355 + 0.440556i −0.964720 0.263278i \(-0.915197\pi\)
0.710365 + 0.703833i \(0.248530\pi\)
\(314\) 22.0000 1.24153
\(315\) −3.00000 5.19615i −0.169031 0.292770i
\(316\) 2.00000 0.112509
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) −3.00000 + 1.73205i −0.168232 + 0.0971286i
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) 13.5000 + 7.79423i 0.753497 + 0.435031i
\(322\) 0 0
\(323\) 15.0000 0.834622
\(324\) 9.00000 0.500000
\(325\) −1.00000 −0.0554700
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 9.00000 + 5.19615i 0.497701 + 0.287348i
\(328\) −3.50000 6.06218i −0.193255 0.334728i
\(329\) 12.0000 + 20.7846i 0.661581 + 1.14589i
\(330\) 1.50000 0.866025i 0.0825723 0.0476731i
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) −12.0000 −0.658586
\(333\) −12.0000 20.7846i −0.657596 1.13899i
\(334\) 8.00000 0.437741
\(335\) −7.50000 + 12.9904i −0.409769 + 0.709740i
\(336\) 3.46410i 0.188982i
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) −0.500000 0.866025i −0.0271964 0.0471056i
\(339\) 24.2487i 1.31701i
\(340\) 2.50000 4.33013i 0.135582 0.234834i
\(341\) 6.00000 0.324918
\(342\) −9.00000 −0.486664
\(343\) −20.0000 −1.07990
\(344\) −2.50000 + 4.33013i −0.134791 + 0.233465i
\(345\) 0 0
\(346\) 7.00000 + 12.1244i 0.376322 + 0.651809i
\(347\) 4.50000 + 7.79423i 0.241573 + 0.418416i 0.961162 0.275983i \(-0.0890035\pi\)
−0.719590 + 0.694399i \(0.755670\pi\)
\(348\) 12.0000 + 6.92820i 0.643268 + 0.371391i
\(349\) −4.00000 + 6.92820i −0.214115 + 0.370858i −0.952998 0.302975i \(-0.902020\pi\)
0.738883 + 0.673833i \(0.235353\pi\)
\(350\) 2.00000 0.106904
\(351\) −4.50000 + 2.59808i −0.240192 + 0.138675i
\(352\) 1.00000 0.0533002
\(353\) 5.50000 9.52628i 0.292735 0.507033i −0.681720 0.731613i \(-0.738768\pi\)
0.974456 + 0.224580i \(0.0721011\pi\)
\(354\) −7.50000 4.33013i −0.398621 0.230144i
\(355\) −1.00000 1.73205i −0.0530745 0.0919277i
\(356\) −5.00000 8.66025i −0.264999 0.458993i
\(357\) −15.0000 + 8.66025i −0.793884 + 0.458349i
\(358\) −10.0000 + 17.3205i −0.528516 + 0.915417i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) −1.50000 + 2.59808i −0.0790569 + 0.136931i
\(361\) −10.0000 −0.526316
\(362\) 7.00000 12.1244i 0.367912 0.637242i
\(363\) 17.3205i 0.909091i
\(364\) 1.00000 + 1.73205i 0.0524142 + 0.0907841i
\(365\) −5.50000 9.52628i −0.287883 0.498628i
\(366\) 24.2487i 1.26750i
\(367\) 6.00000 10.3923i 0.313197 0.542474i −0.665855 0.746081i \(-0.731933\pi\)
0.979053 + 0.203607i \(0.0652665\pi\)
\(368\) 0 0
\(369\) 10.5000 18.1865i 0.546608 0.946753i
\(370\) 8.00000 0.415900
\(371\) −2.00000 + 3.46410i −0.103835 + 0.179847i
\(372\) −9.00000 + 5.19615i −0.466628 + 0.269408i
\(373\) 7.00000 + 12.1244i 0.362446 + 0.627775i 0.988363 0.152115i \(-0.0486083\pi\)
−0.625917 + 0.779890i \(0.715275\pi\)
\(374\) −2.50000 4.33013i −0.129272 0.223906i
\(375\) −1.50000 0.866025i −0.0774597 0.0447214i
\(376\) 6.00000 10.3923i 0.309426 0.535942i
\(377\) −8.00000 −0.412021
\(378\) 9.00000 5.19615i 0.462910 0.267261i
\(379\) 15.0000 0.770498 0.385249 0.922813i \(-0.374116\pi\)
0.385249 + 0.922813i \(0.374116\pi\)
\(380\) 1.50000 2.59808i 0.0769484 0.133278i
\(381\) 33.0000 + 19.0526i 1.69064 + 0.976092i
\(382\) 0 0
\(383\) −9.00000 15.5885i −0.459879 0.796533i 0.539076 0.842257i \(-0.318774\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(384\) −1.50000 + 0.866025i −0.0765466 + 0.0441942i
\(385\) 1.00000 1.73205i 0.0509647 0.0882735i
\(386\) −13.0000 −0.661683
\(387\) −15.0000 −0.762493
\(388\) −13.0000 −0.659975
\(389\) 5.00000 8.66025i 0.253510 0.439092i −0.710980 0.703213i \(-0.751748\pi\)
0.964490 + 0.264120i \(0.0850816\pi\)
\(390\) 1.73205i 0.0877058i
\(391\) 0 0
\(392\) 1.50000 + 2.59808i 0.0757614 + 0.131223i
\(393\) 6.92820i 0.349482i
\(394\) −9.00000 + 15.5885i −0.453413 + 0.785335i
\(395\) −2.00000 −0.100631
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −9.00000 + 15.5885i −0.451129 + 0.781379i
\(399\) −9.00000 + 5.19615i −0.450564 + 0.260133i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) −22.5000 12.9904i −1.12220 0.647901i
\(403\) 3.00000 5.19615i 0.149441 0.258839i
\(404\) 2.00000 0.0995037
\(405\) −9.00000 −0.447214
\(406\) 16.0000 0.794067
\(407\) 4.00000 6.92820i 0.198273 0.343418i
\(408\) 7.50000 + 4.33013i 0.371305 + 0.214373i
\(409\) −9.50000 16.4545i −0.469745 0.813622i 0.529657 0.848212i \(-0.322321\pi\)
−0.999402 + 0.0345902i \(0.988987\pi\)
\(410\) 3.50000 + 6.06218i 0.172853 + 0.299390i
\(411\) −4.50000 + 2.59808i −0.221969 + 0.128154i
\(412\) 0 0
\(413\) −10.0000 −0.492068
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0.500000 0.866025i 0.0245145 0.0424604i
\(417\) 12.1244i 0.593732i
\(418\) −1.50000 2.59808i −0.0733674 0.127076i
\(419\) 10.0000 + 17.3205i 0.488532 + 0.846162i 0.999913 0.0131919i \(-0.00419923\pi\)
−0.511381 + 0.859354i \(0.670866\pi\)
\(420\) 3.46410i 0.169031i
\(421\) −14.0000 + 24.2487i −0.682318 + 1.18181i 0.291953 + 0.956433i \(0.405695\pi\)
−0.974272 + 0.225377i \(0.927639\pi\)
\(422\) −20.0000 −0.973585
\(423\) 36.0000 1.75038
\(424\) 2.00000 0.0971286
\(425\) −2.50000 + 4.33013i −0.121268 + 0.210042i
\(426\) 3.00000 1.73205i 0.145350 0.0839181i
\(427\) −14.0000 24.2487i −0.677507 1.17348i
\(428\) −4.50000 7.79423i −0.217516 0.376748i
\(429\) −1.50000 0.866025i −0.0724207 0.0418121i
\(430\) 2.50000 4.33013i 0.120561 0.208817i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) −11.0000 −0.528626 −0.264313 0.964437i \(-0.585145\pi\)
−0.264313 + 0.964437i \(0.585145\pi\)
\(434\) −6.00000 + 10.3923i −0.288009 + 0.498847i
\(435\) −12.0000 6.92820i −0.575356 0.332182i
\(436\) −3.00000 5.19615i −0.143674 0.248851i
\(437\) 0 0
\(438\) 16.5000 9.52628i 0.788400 0.455183i
\(439\) 4.00000 6.92820i 0.190910 0.330665i −0.754642 0.656136i \(-0.772190\pi\)
0.945552 + 0.325471i \(0.105523\pi\)
\(440\) −1.00000 −0.0476731
\(441\) −4.50000 + 7.79423i −0.214286 + 0.371154i
\(442\) −5.00000 −0.237826
\(443\) −0.500000 + 0.866025i −0.0237557 + 0.0411461i −0.877659 0.479286i \(-0.840896\pi\)
0.853903 + 0.520432i \(0.174229\pi\)
\(444\) 13.8564i 0.657596i
\(445\) 5.00000 + 8.66025i 0.237023 + 0.410535i
\(446\) 7.00000 + 12.1244i 0.331460 + 0.574105i
\(447\) 24.2487i 1.14692i
\(448\) −1.00000 + 1.73205i −0.0472456 + 0.0818317i
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 1.50000 2.59808i 0.0707107 0.122474i
\(451\) 7.00000 0.329617
\(452\) −7.00000 + 12.1244i −0.329252 + 0.570282i
\(453\) 0 0
\(454\) −8.50000 14.7224i −0.398925 0.690958i
\(455\) −1.00000 1.73205i −0.0468807 0.0811998i
\(456\) 4.50000 + 2.59808i 0.210732 + 0.121666i
\(457\) −17.5000 + 30.3109i −0.818615 + 1.41788i 0.0880870 + 0.996113i \(0.471925\pi\)
−0.906702 + 0.421771i \(0.861409\pi\)
\(458\) −8.00000 −0.373815
\(459\) 25.9808i 1.21268i
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 3.00000 + 1.73205i 0.139573 + 0.0805823i
\(463\) −8.00000 13.8564i −0.371792 0.643962i 0.618050 0.786139i \(-0.287923\pi\)
−0.989841 + 0.142177i \(0.954590\pi\)
\(464\) −4.00000 6.92820i −0.185695 0.321634i
\(465\) 9.00000 5.19615i 0.417365 0.240966i
\(466\) −7.50000 + 12.9904i −0.347431 + 0.601768i
\(467\) 7.00000 0.323921 0.161961 0.986797i \(-0.448218\pi\)
0.161961 + 0.986797i \(0.448218\pi\)
\(468\) 3.00000 0.138675
\(469\) −30.0000 −1.38527
\(470\) −6.00000 + 10.3923i −0.276759 + 0.479361i
\(471\) 38.1051i 1.75579i
\(472\) 2.50000 + 4.33013i 0.115072 + 0.199310i
\(473\) −2.50000 4.33013i −0.114950 0.199099i
\(474\) 3.46410i 0.159111i
\(475\) −1.50000 + 2.59808i −0.0688247 + 0.119208i
\(476\) 10.0000 0.458349
\(477\) 3.00000 + 5.19615i 0.137361 + 0.237915i
\(478\) −2.00000 −0.0914779
\(479\) −4.00000 + 6.92820i −0.182765 + 0.316558i −0.942821 0.333300i \(-0.891838\pi\)
0.760056 + 0.649857i \(0.225171\pi\)
\(480\) 1.50000 0.866025i 0.0684653 0.0395285i
\(481\) −4.00000 6.92820i −0.182384 0.315899i
\(482\) 0.500000 + 0.866025i 0.0227744 + 0.0394464i
\(483\) 0 0
\(484\) 5.00000 8.66025i 0.227273 0.393648i
\(485\) 13.0000 0.590300
\(486\) 15.5885i 0.707107i
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) −7.00000 + 12.1244i −0.316875 + 0.548844i
\(489\) −24.0000 13.8564i −1.08532 0.626608i
\(490\) −1.50000 2.59808i −0.0677631 0.117369i
\(491\) −1.50000 2.59808i −0.0676941 0.117250i 0.830192 0.557478i \(-0.188231\pi\)
−0.897886 + 0.440228i \(0.854898\pi\)
\(492\) −10.5000 + 6.06218i −0.473377 + 0.273304i
\(493\) −20.0000 + 34.6410i −0.900755 + 1.56015i
\(494\) −3.00000 −0.134976
\(495\) −1.50000 2.59808i −0.0674200 0.116775i
\(496\) 6.00000 0.269408
\(497\) 2.00000 3.46410i 0.0897123 0.155386i
\(498\) 20.7846i 0.931381i
\(499\) −5.50000 9.52628i −0.246214 0.426455i 0.716258 0.697835i \(-0.245853\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0.500000 + 0.866025i 0.0223607 + 0.0387298i
\(501\) 13.8564i 0.619059i
\(502\) −13.5000 + 23.3827i −0.602534 + 1.04362i
\(503\) −2.00000 −0.0891756 −0.0445878 0.999005i \(-0.514197\pi\)
−0.0445878 + 0.999005i \(0.514197\pi\)
\(504\) −6.00000 −0.267261
\(505\) −2.00000 −0.0889988
\(506\) 0 0
\(507\) −1.50000 + 0.866025i −0.0666173 + 0.0384615i
\(508\) −11.0000 19.0526i −0.488046 0.845321i
\(509\) 9.00000 + 15.5885i 0.398918 + 0.690946i 0.993593 0.113020i \(-0.0360525\pi\)
−0.594675 + 0.803966i \(0.702719\pi\)
\(510\) −7.50000 4.33013i −0.332106 0.191741i
\(511\) 11.0000 19.0526i 0.486611 0.842836i
\(512\) 1.00000 0.0441942
\(513\) 15.5885i 0.688247i
\(514\) 15.0000 0.661622
\(515\) 0 0
\(516\) 7.50000 + 4.33013i 0.330169 + 0.190623i
\(517\) 6.00000 + 10.3923i 0.263880 + 0.457053i
\(518\) 8.00000 + 13.8564i 0.351500 + 0.608816i
\(519\) 21.0000 12.1244i 0.921798 0.532200i
\(520\) −0.500000 + 0.866025i −0.0219265 + 0.0379777i
\(521\) −23.0000 −1.00765 −0.503824 0.863806i \(-0.668074\pi\)
−0.503824 + 0.863806i \(0.668074\pi\)
\(522\) 12.0000 20.7846i 0.525226 0.909718i
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −2.00000 + 3.46410i −0.0873704 + 0.151330i
\(525\) 3.46410i 0.151186i
\(526\) 2.00000 + 3.46410i 0.0872041 + 0.151042i
\(527\) −15.0000 25.9808i −0.653410 1.13174i
\(528\) 1.73205i 0.0753778i
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) −2.00000 −0.0868744
\(531\) −7.50000 + 12.9904i −0.325472 + 0.563735i
\(532\) 6.00000 0.260133
\(533\) 3.50000 6.06218i 0.151602 0.262582i
\(534\) −15.0000 + 8.66025i −0.649113 + 0.374766i
\(535\) 4.50000 + 7.79423i 0.194552 + 0.336974i
\(536\) 7.50000 + 12.9904i 0.323951 + 0.561099i
\(537\) 30.0000 + 17.3205i 1.29460 + 0.747435i
\(538\) 0 0
\(539\) −3.00000 −0.129219
\(540\) 4.50000 + 2.59808i 0.193649 + 0.111803i
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) −8.00000 + 13.8564i −0.343629 + 0.595184i
\(543\) −21.0000 12.1244i −0.901196 0.520306i
\(544\) −2.50000 4.33013i −0.107187 0.185653i
\(545\) 3.00000 + 5.19615i 0.128506 + 0.222579i
\(546\) 3.00000 1.73205i 0.128388 0.0741249i
\(547\) 11.5000 19.9186i 0.491704 0.851657i −0.508250 0.861210i \(-0.669707\pi\)
0.999954 + 0.00955248i \(0.00304070\pi\)
\(548\) 3.00000 0.128154
\(549\) −42.0000 −1.79252
\(550\) 1.00000 0.0426401
\(551\) −12.0000 + 20.7846i −0.511217 + 0.885454i
\(552\) 0 0
\(553\) −2.00000 3.46410i −0.0850487 0.147309i
\(554\) 8.00000 + 13.8564i 0.339887 + 0.588702i
\(555\) 13.8564i 0.588172i
\(556\) −3.50000 + 6.06218i −0.148433 + 0.257094i
\(557\) −16.0000 −0.677942 −0.338971 0.940797i \(-0.610079\pi\)
−0.338971 + 0.940797i \(0.610079\pi\)
\(558\) 9.00000 + 15.5885i 0.381000 + 0.659912i
\(559\) −5.00000 −0.211477
\(560\) 1.00000 1.73205i 0.0422577 0.0731925i
\(561\) −7.50000 + 4.33013i −0.316650 + 0.182818i
\(562\) 15.0000 + 25.9808i 0.632737 + 1.09593i
\(563\) −7.50000 12.9904i −0.316087 0.547479i 0.663581 0.748105i \(-0.269036\pi\)
−0.979668 + 0.200625i \(0.935703\pi\)
\(564\) −18.0000 10.3923i −0.757937 0.437595i
\(565\) 7.00000 12.1244i 0.294492 0.510075i
\(566\) 32.0000 1.34506
\(567\) −9.00000 15.5885i −0.377964 0.654654i
\(568\) −2.00000 −0.0839181
\(569\) −22.5000 + 38.9711i −0.943249 + 1.63376i −0.184030 + 0.982921i \(0.558914\pi\)
−0.759220 + 0.650835i \(0.774419\pi\)
\(570\) −4.50000 2.59808i −0.188484 0.108821i
\(571\) −6.50000 11.2583i −0.272017 0.471146i 0.697362 0.716720i \(-0.254357\pi\)
−0.969378 + 0.245573i \(0.921024\pi\)
\(572\) 0.500000 + 0.866025i 0.0209061 + 0.0362103i
\(573\) 0 0
\(574\) −7.00000 + 12.1244i −0.292174 + 0.506061i
\(575\) 0 0
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 21.0000 0.874241 0.437121 0.899403i \(-0.355998\pi\)
0.437121 + 0.899403i \(0.355998\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 22.5167i 0.935760i
\(580\) 4.00000 + 6.92820i 0.166091 + 0.287678i
\(581\) 12.0000 + 20.7846i 0.497844 + 0.862291i
\(582\) 22.5167i 0.933346i
\(583\) −1.00000 + 1.73205i −0.0414158 + 0.0717342i
\(584\) −11.0000 −0.455183
\(585\) −3.00000 −0.124035
\(586\) −2.00000 −0.0826192
\(587\) 16.5000 28.5788i 0.681028 1.17957i −0.293640 0.955916i \(-0.594867\pi\)
0.974668 0.223659i \(-0.0718001\pi\)
\(588\) 4.50000 2.59808i 0.185577 0.107143i
\(589\) −9.00000 15.5885i −0.370839 0.642311i
\(590\) −2.50000 4.33013i −0.102923 0.178269i
\(591\) 27.0000 + 15.5885i 1.11063 + 0.641223i
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) 46.0000 1.88899 0.944497 0.328521i \(-0.106550\pi\)
0.944497 + 0.328521i \(0.106550\pi\)
\(594\) 4.50000 2.59808i 0.184637 0.106600i
\(595\) −10.0000 −0.409960
\(596\) −7.00000 + 12.1244i −0.286731 + 0.496633i
\(597\) 27.0000 + 15.5885i 1.10504 + 0.637993i
\(598\) 0 0
\(599\) −3.00000 5.19615i −0.122577 0.212309i 0.798206 0.602384i \(-0.205782\pi\)
−0.920783 + 0.390075i \(0.872449\pi\)
\(600\) −1.50000 + 0.866025i −0.0612372 + 0.0353553i
\(601\) −9.50000 + 16.4545i −0.387513 + 0.671192i −0.992114 0.125336i \(-0.959999\pi\)
0.604601 + 0.796528i \(0.293332\pi\)
\(602\) 10.0000 0.407570
\(603\) −22.5000 + 38.9711i −0.916271 + 1.58703i
\(604\) 0 0
\(605\) −5.00000 + 8.66025i −0.203279 + 0.352089i
\(606\) 3.46410i 0.140720i
\(607\) 11.0000 + 19.0526i 0.446476 + 0.773320i 0.998154 0.0607380i \(-0.0193454\pi\)
−0.551678 + 0.834058i \(0.686012\pi\)
\(608\) −1.50000 2.59808i −0.0608330 0.105366i
\(609\) 27.7128i 1.12298i
\(610\) 7.00000 12.1244i 0.283422 0.490901i
\(611\) 12.0000 0.485468
\(612\) 7.50000 12.9904i 0.303170 0.525105i
\(613\) −4.00000 −0.161558 −0.0807792 0.996732i \(-0.525741\pi\)
−0.0807792 + 0.996732i \(0.525741\pi\)
\(614\) −4.50000 + 7.79423i −0.181605 + 0.314549i
\(615\) 10.5000 6.06218i 0.423401 0.244451i
\(616\) −1.00000 1.73205i −0.0402911 0.0697863i
\(617\) −4.50000 7.79423i −0.181163 0.313784i 0.761114 0.648618i \(-0.224653\pi\)
−0.942277 + 0.334835i \(0.891320\pi\)
\(618\) 0 0
\(619\) 6.50000 11.2583i 0.261257 0.452510i −0.705319 0.708890i \(-0.749196\pi\)
0.966576 + 0.256379i \(0.0825296\pi\)
\(620\) −6.00000 −0.240966
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) −10.0000 + 17.3205i −0.400642 + 0.693932i
\(624\) −1.50000 0.866025i −0.0600481 0.0346688i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −4.50000 7.79423i −0.179856 0.311520i
\(627\) −4.50000 + 2.59808i −0.179713 + 0.103757i
\(628\) −11.0000 + 19.0526i −0.438948 + 0.760280i
\(629\) −40.0000 −1.59490
\(630\) 6.00000 0.239046
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) −1.00000 + 1.73205i −0.0397779 + 0.0688973i
\(633\) 34.6410i 1.37686i
\(634\) −9.00000 15.5885i −0.357436 0.619097i
\(635\) 11.0000 + 19.0526i 0.436522 + 0.756078i
\(636\) 3.46410i 0.137361i
\(637\) −1.50000 + 2.59808i −0.0594322 + 0.102940i
\(638\) 8.00000 0.316723
\(639\) −3.00000 5.19615i −0.118678 0.205557i
\(640\) −1.00000 −0.0395285
\(641\) −22.5000 + 38.9711i −0.888697 + 1.53927i −0.0472793 + 0.998882i \(0.515055\pi\)
−0.841417 + 0.540386i \(0.818278\pi\)
\(642\) −13.5000 + 7.79423i −0.532803 + 0.307614i
\(643\) 0.500000 + 0.866025i 0.0197181 + 0.0341527i 0.875716 0.482826i \(-0.160390\pi\)
−0.855998 + 0.516979i \(0.827056\pi\)
\(644\) 0 0
\(645\) −7.50000 4.33013i −0.295312 0.170499i
\(646\) −7.50000 + 12.9904i −0.295084 + 0.511100i
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) −5.00000 −0.196267
\(650\) 0.500000 0.866025i 0.0196116 0.0339683i
\(651\) 18.0000 + 10.3923i 0.705476 + 0.407307i
\(652\) 8.00000 + 13.8564i 0.313304 + 0.542659i
\(653\) −3.00000 5.19615i −0.117399 0.203341i 0.801337 0.598213i \(-0.204122\pi\)
−0.918736 + 0.394872i \(0.870789\pi\)
\(654\) −9.00000 + 5.19615i −0.351928 + 0.203186i
\(655\) 2.00000 3.46410i 0.0781465 0.135354i
\(656\) 7.00000 0.273304
\(657\) −16.5000 28.5788i −0.643726 1.11497i
\(658\) −24.0000 −0.935617
\(659\) −10.0000 + 17.3205i −0.389545 + 0.674711i −0.992388 0.123148i \(-0.960701\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(660\) 1.73205i 0.0674200i
\(661\) −9.00000 15.5885i −0.350059 0.606321i 0.636200 0.771524i \(-0.280505\pi\)
−0.986260 + 0.165203i \(0.947172\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 8.66025i 0.336336i
\(664\) 6.00000 10.3923i 0.232845 0.403300i
\(665\) −6.00000 −0.232670
\(666\) 24.0000 0.929981
\(667\) 0 0
\(668\) −4.00000 + 6.92820i −0.154765 + 0.268060i
\(669\) 21.0000 12.1244i 0.811907 0.468755i
\(670\) −7.50000 12.9904i −0.289750 0.501862i
\(671\) −7.00000 12.1244i −0.270232 0.468056i
\(672\) 3.00000 + 1.73205i 0.115728 + 0.0668153i
\(673\) 11.0000 19.0526i 0.424019 0.734422i −0.572309 0.820038i \(-0.693952\pi\)
0.996328 + 0.0856156i \(0.0272857\pi\)
\(674\) −13.0000 −0.500741
\(675\) −4.50000 2.59808i −0.173205 0.100000i
\(676\) 1.00000 0.0384615
\(677\) −9.00000 + 15.5885i −0.345898 + 0.599113i −0.985517 0.169580i \(-0.945759\pi\)
0.639618 + 0.768693i \(0.279092\pi\)
\(678\) 21.0000 + 12.1244i 0.806500 + 0.465633i
\(679\) 13.0000 + 22.5167i 0.498894 + 0.864110i
\(680\) 2.50000 + 4.33013i 0.0958706 + 0.166053i
\(681\) −25.5000 + 14.7224i −0.977162 + 0.564165i
\(682\) −3.00000 + 5.19615i −0.114876 + 0.198971i
\(683\) −5.00000 −0.191320 −0.0956598 0.995414i \(-0.530496\pi\)
−0.0956598 + 0.995414i \(0.530496\pi\)
\(684\) 4.50000 7.79423i 0.172062 0.298020i
\(685\) −3.00000 −0.114624
\(686\) 10.0000 17.3205i 0.381802 0.661300i
\(687\) 13.8564i 0.528655i
\(688\) −2.50000 4.33013i −0.0953116 0.165085i
\(689\) 1.00000 + 1.73205i 0.0380970 + 0.0659859i
\(690\) 0 0
\(691\) −2.00000 + 3.46410i −0.0760836 + 0.131781i −0.901557 0.432660i \(-0.857575\pi\)
0.825473 + 0.564441i \(0.190908\pi\)
\(692\) −14.0000 −0.532200
\(693\) 3.00000 5.19615i 0.113961 0.197386i
\(694\) −9.00000 −0.341635
\(695\) 3.50000 6.06218i 0.132763 0.229952i
\(696\) −12.0000 + 6.92820i −0.454859 + 0.262613i
\(697\) −17.5000 30.3109i −0.662860 1.14811i
\(698\) −4.00000 6.92820i −0.151402 0.262236i
\(699\) 22.5000 + 12.9904i 0.851028 + 0.491341i
\(700\) −1.00000 + 1.73205i −0.0377964 + 0.0654654i
\(701\) −46.0000 −1.73740 −0.868698 0.495342i \(-0.835043\pi\)
−0.868698 + 0.495342i \(0.835043\pi\)
\(702\) 5.19615i 0.196116i
\(703\) −24.0000 −0.905177
\(704\) −0.500000 + 0.866025i −0.0188445 + 0.0326396i
\(705\) 18.0000 + 10.3923i 0.677919 + 0.391397i
\(706\) 5.50000 + 9.52628i 0.206995 + 0.358526i
\(707\) −2.00000 3.46410i −0.0752177 0.130281i
\(708\) 7.50000 4.33013i 0.281867 0.162736i
\(709\) −13.0000 + 22.5167i −0.488225 + 0.845631i −0.999908 0.0135434i \(-0.995689\pi\)
0.511683 + 0.859174i \(0.329022\pi\)
\(710\) 2.00000 0.0750587
\(711\) −6.00000 −0.225018
\(712\) 10.0000 0.374766
\(713\) 0 0
\(714\) 17.3205i 0.648204i
\(715\) −0.500000 0.866025i −0.0186989 0.0323875i
\(716\) −10.0000 17.3205i −0.373718 0.647298i
\(717\) 3.46410i 0.129369i
\(718\) −3.00000 + 5.19615i −0.111959 + 0.193919i
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) −1.50000 2.59808i −0.0559017 0.0968246i
\(721\) 0 0
\(722\) 5.00000 8.66025i 0.186081 0.322301i
\(723\) 1.50000 0.866025i 0.0557856 0.0322078i
\(724\) 7.00000 + 12.1244i 0.260153 + 0.450598i
\(725\) −4.00000 6.92820i −0.148556 0.257307i
\(726\) −15.0000 8.66025i −0.556702 0.321412i
\(727\) 25.0000 43.3013i 0.927199 1.60596i 0.139212 0.990263i \(-0.455543\pi\)
0.787986 0.615693i \(-0.211124\pi\)
\(728\) −2.00000 −0.0741249
\(729\) −27.0000 −1.00000
\(730\) 11.0000 0.407128
\(731\) −12.5000 + 21.6506i −0.462329 + 0.800778i
\(732\) 21.0000 + 12.1244i 0.776182 + 0.448129i
\(733\) 5.00000 + 8.66025i 0.184679 + 0.319874i 0.943468 0.331463i \(-0.107542\pi\)
−0.758789 + 0.651336i \(0.774209\pi\)
\(734\) 6.00000 + 10.3923i 0.221464 + 0.383587i
\(735\) −4.50000 + 2.59808i −0.165985 + 0.0958315i
\(736\) 0 0
\(737\) −15.0000 −0.552532
\(738\) 10.5000 + 18.1865i 0.386510 + 0.669456i
\(739\) 27.0000 0.993211 0.496606 0.867976i \(-0.334580\pi\)
0.496606 + 0.867976i \(0.334580\pi\)
\(740\) −4.00000 + 6.92820i −0.147043 + 0.254686i
\(741\) 5.19615i 0.190885i
\(742\) −2.00000 3.46410i −0.0734223 0.127171i
\(743\) 18.0000 + 31.1769i 0.660356 + 1.14377i 0.980522 + 0.196409i \(0.0629279\pi\)
−0.320166 + 0.947361i \(0.603739\pi\)
\(744\) 10.3923i 0.381000i
\(745\) 7.00000 12.1244i 0.256460 0.444202i
\(746\) −14.0000 −0.512576
\(747\) 36.0000 1.31717
\(748\) 5.00000 0.182818
\(749\) −9.00000 + 15.5885i −0.328853 + 0.569590i
\(750\) 1.50000 0.866025i 0.0547723 0.0316228i
\(751\) −7.00000 12.1244i −0.255434 0.442424i 0.709580 0.704625i \(-0.248885\pi\)
−0.965013 + 0.262201i \(0.915552\pi\)
\(752\) 6.00000 + 10.3923i 0.218797 + 0.378968i
\(753\) 40.5000 + 23.3827i 1.47590 + 0.852112i
\(754\) 4.00000 6.92820i 0.145671 0.252310i
\(755\) 0 0
\(756\) 10.3923i 0.377964i
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) −7.50000 + 12.9904i −0.272412 + 0.471832i
\(759\) 0 0
\(760\) 1.50000 + 2.59808i 0.0544107 + 0.0942421i
\(761\) 1.00000 + 1.73205i 0.0362500 + 0.0627868i 0.883581 0.468278i \(-0.155125\pi\)
−0.847331 + 0.531065i \(0.821792\pi\)
\(762\) −33.0000 + 19.0526i −1.19546 + 0.690201i
\(763\) −6.00000 + 10.3923i −0.217215 + 0.376227i
\(764\) 0 0
\(765\) −7.50000 + 12.9904i −0.271163 + 0.469668i
\(766\) 18.0000 0.650366
\(767\) −2.50000 + 4.33013i −0.0902698 + 0.156352i
\(768\) 1.73205i 0.0625000i
\(769\) 13.0000 + 22.5167i 0.468792 + 0.811972i 0.999364 0.0356685i \(-0.0113561\pi\)
−0.530572 + 0.847640i \(0.678023\pi\)
\(770\) 1.00000 + 1.73205i 0.0360375 + 0.0624188i
\(771\) 25.9808i 0.935674i
\(772\) 6.50000 11.2583i 0.233940 0.405196i
\(773\) −40.0000 −1.43870 −0.719350 0.694648i \(-0.755560\pi\)
−0.719350 + 0.694648i \(0.755560\pi\)
\(774\) 7.50000 12.9904i 0.269582 0.466930i
\(775\) 6.00000 0.215526
\(776\) 6.50000 11.2583i 0.233336 0.404151i
\(777\) 24.0000 13.8564i 0.860995 0.497096i
\(778\) 5.00000 + 8.66025i 0.179259 + 0.310485i
\(779\) −10.5000 18.1865i −0.376202 0.651600i
\(780\) 1.50000 + 0.866025i 0.0537086 + 0.0310087i
\(781\) 1.00000 1.73205i 0.0357828 0.0619777i
\(782\) 0 0
\(783\) −36.0000 20.7846i −1.28654 0.742781i
\(784\) −3.00000 −0.107143
\(785\) 11.0000 19.0526i 0.392607 0.680015i
\(786\) 6.00000 + 3.46410i 0.214013 + 0.123560i
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) −9.00000 15.5885i −0.320612 0.555316i
\(789\) 6.00000 3.46410i 0.213606 0.123325i
\(790\) 1.00000 1.73205i 0.0355784 0.0616236i
\(791\) 28.0000 0.995565
\(792\) −3.00000 −0.106600
\(793\) −14.0000 −0.497155
\(794\) −1.00000 + 1.73205i −0.0354887 + 0.0614682i
\(795\) 3.46410i 0.122859i
\(796\) −9.00000 15.5885i −0.318997 0.552518i
\(797\) −19.0000 32.9090i −0.673015 1.16570i −0.977045 0.213033i \(-0.931666\pi\)
0.304030 0.952662i \(-0.401668\pi\)
\(798\) 10.3923i 0.367884i
\(799\) 30.0000 51.9615i 1.06132 1.83827i
\(800\) 1.00000 0.0353553
\(801\) 15.0000 + 25.9808i 0.529999 + 0.917985i
\(802\) 3.00000 0.105934
\(803\) 5.50000 9.52628i 0.194091 0.336175i
\(804\) 22.5000 12.9904i 0.793514 0.458135i
\(805\) 0 0
\(806\) 3.00000 + 5.19615i 0.105670 + 0.183027i
\(807\) 0 0
\(808\) −1.00000 + 1.73205i −0.0351799 + 0.0609333i
\(809\) 5.00000 0.175791 0.0878953 0.996130i \(-0.471986\pi\)
0.0878953 + 0.996130i \(0.471986\pi\)
\(810\) 4.50000 7.79423i 0.158114 0.273861i
\(811\) −47.0000 −1.65039 −0.825197 0.564846i \(-0.808936\pi\)
−0.825197 + 0.564846i \(0.808936\pi\)
\(812\) −8.00000 + 13.8564i −0.280745 + 0.486265i
\(813\) 24.0000 + 13.8564i 0.841717 + 0.485965i
\(814\) 4.00000 + 6.92820i 0.140200 + 0.242833i
\(815\) −8.00000 13.8564i −0.280228 0.485369i
\(816\) −7.50000 + 4.33013i −0.262553 + 0.151585i
\(817\) −7.50000 + 12.9904i −0.262392 + 0.454476i
\(818\) 19.0000 0.664319
\(819\) −3.00000 5.19615i −0.104828 0.181568i
\(820\) −7.00000 −0.244451
\(821\) −4.00000 + 6.92820i −0.139601 + 0.241796i −0.927346 0.374206i \(-0.877915\pi\)
0.787745 + 0.616002i \(0.211249\pi\)
\(822\) 5.19615i 0.181237i
\(823\) −4.00000 6.92820i −0.139431 0.241502i 0.787850 0.615867i \(-0.211194\pi\)
−0.927281 + 0.374365i \(0.877861\pi\)
\(824\) 0 0
\(825\) 1.73205i 0.0603023i
\(826\) 5.00000 8.66025i 0.173972 0.301329i
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) −6.00000 + 10.3923i −0.208263 + 0.360722i
\(831\) 24.0000 13.8564i 0.832551 0.480673i
\(832\) 0.500000 + 0.866025i 0.0173344 + 0.0300240i
\(833\) 7.50000 + 12.9904i 0.259860 + 0.450090i
\(834\) 10.5000 + 6.06218i 0.363585 + 0.209916i
\(835\) 4.00000 6.92820i 0.138426 0.239760i
\(836\) 3.00000 0.103757
\(837\) 27.0000 15.5885i 0.933257 0.538816i
\(838\) −20.0000 −0.690889
\(839\) 8.00000 13.8564i 0.276191 0.478376i −0.694244 0.719740i \(-0.744261\pi\)
0.970435 + 0.241363i \(0.0775945\pi\)
\(840\) −3.00000 1.73205i −0.103510 0.0597614i
\(841\) −17.5000 30.3109i −0.603448 1.04520i
\(842\) −14.0000 24.2487i −0.482472 0.835666i
\(843\) 45.0000 25.9808i 1.54988 0.894825i
\(844\) 10.0000 17.3205i 0.344214 0.596196i
\(845\) −1.00000 −0.0344010
\(846\) −18.0000 + 31.1769i −0.618853 + 1.07188i
\(847\) −20.0000 −0.687208
\(848\) −1.00000 + 1.73205i −0.0343401 + 0.0594789i
\(849\) 55.4256i 1.90220i
\(850\) −2.50000 4.33013i −0.0857493 0.148522i
\(851\) 0 0
\(852\) 3.46410i 0.118678i
\(853\) −8.00000 + 13.8564i −0.273915 + 0.474434i −0.969861 0.243660i \(-0.921652\pi\)
0.695946 + 0.718094i \(0.254985\pi\)
\(854\) 28.0000 0.958140
\(855\) −4.50000 + 7.79423i −0.153897 + 0.266557i
\(856\) 9.00000 0.307614
\(857\) 13.0000 22.5167i 0.444072 0.769154i −0.553915 0.832573i \(-0.686867\pi\)
0.997987 + 0.0634184i \(0.0202003\pi\)
\(858\) 1.50000 0.866025i 0.0512092 0.0295656i
\(859\) −22.5000 38.9711i −0.767690 1.32968i −0.938813 0.344428i \(-0.888073\pi\)
0.171122 0.985250i \(-0.445261\pi\)
\(860\) 2.50000 + 4.33013i 0.0852493 + 0.147656i
\(861\) 21.0000 + 12.1244i 0.715678 + 0.413197i
\(862\) −6.00000 + 10.3923i −0.204361 + 0.353963i
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 14.0000 0.476014
\(866\) 5.50000 9.52628i 0.186898 0.323716i
\(867\) 12.0000 + 6.92820i 0.407541 + 0.235294i
\(868\) −6.00000 10.3923i −0.203653 0.352738i
\(869\) −1.00000 1.73205i −0.0339227 0.0587558i
\(870\) 12.0000 6.92820i 0.406838 0.234888i
\(871\) −7.50000 + 12.9904i −0.254128 + 0.440162i
\(872\) 6.00000 0.203186
\(873\) 39.0000 1.31995
\(874\) 0 0
\(875\) 1.00000 1.73205i 0.0338062 0.0585540i
\(876\) 19.0526i 0.643726i
\(877\) 16.0000 + 27.7128i 0.540282 + 0.935795i 0.998888 + 0.0471555i \(0.0150156\pi\)
−0.458606 + 0.888640i \(0.651651\pi\)
\(878\) 4.00000 + 6.92820i 0.134993 + 0.233816i
\(879\) 3.46410i 0.116841i
\(880\) 0.500000 0.866025i 0.0168550 0.0291937i
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) −4.50000 7.79423i −0.151523 0.262445i
\(883\) 35.0000 1.17784 0.588922 0.808190i \(-0.299553\pi\)
0.588922 + 0.808190i \(0.299553\pi\)
\(884\) 2.50000 4.33013i 0.0840841 0.145638i
\(885\) −7.50000 + 4.33013i −0.252110 + 0.145556i
\(886\) −0.500000 0.866025i −0.0167978 0.0290947i
\(887\) −2.00000 3.46410i −0.0671534 0.116313i 0.830494 0.557028i \(-0.188058\pi\)
−0.897647 + 0.440715i \(0.854725\pi\)
\(888\) −12.0000 6.92820i −0.402694 0.232495i
\(889\) −22.0000 + 38.1051i −0.737856 + 1.27800i
\(890\) −10.0000 −0.335201
\(891\) −4.50000 7.79423i −0.150756 0.261116i
\(892\) −14.0000 −0.468755
\(893\) 18.0000 31.1769i 0.602347 1.04330i
\(894\) 21.0000 + 12.1244i 0.702345 + 0.405499i
\(895\) 10.0000 + 17.3205i 0.334263 + 0.578961i
\(896\) −1.00000 1.73205i −0.0334077 0.0578638i
\(897\) 0 0
\(898\) 4.50000 7.79423i 0.150167 0.260097i
\(899\) 48.0000 1.60089
\(900\) 1.50000 + 2.59808i 0.0500000 + 0.0866025i
\(901\) 10.0000 0.333148
\(902\) −3.50000 + 6.06218i −0.116537 + 0.201848i
\(903\) 17.3205i 0.576390i
\(904\) −7.00000 12.1244i −0.232817 0.403250i
\(905\) −7.00000 12.1244i −0.232688 0.403027i
\(906\) 0 0
\(907\) 8.50000 14.7224i 0.282238 0.488850i −0.689698 0.724097i \(-0.742257\pi\)
0.971936 + 0.235247i \(0.0755899\pi\)
\(908\) 17.0000 0.564165
\(909\) −6.00000 −0.199007
\(910\) 2.00000 0.0662994
\(911\) 16.0000 27.7128i 0.530104 0.918166i −0.469280 0.883050i \(-0.655486\pi\)
0.999383 0.0351168i \(-0.0111803\pi\)
\(912\) −4.50000 + 2.59808i −0.149010 + 0.0860309i
\(913\) 6.00000 + 10.3923i 0.198571 + 0.343935i
\(914\) −17.5000 30.3109i −0.578849 1.00260i
\(915\) −21.0000 12.1244i −0.694239 0.400819i
\(916\) 4.00000 6.92820i 0.132164 0.228914i
\(917\) 8.00000 0.264183
\(918\) −22.5000 12.9904i −0.742611 0.428746i
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 13.5000 + 7.79423i 0.444840 + 0.256829i
\(922\) 0 0
\(923\) −1.00000 1.73205i −0.0329154 0.0570111i
\(924\) −3.00000 + 1.73205i −0.0986928 + 0.0569803i
\(925\) 4.00000 6.92820i 0.131519 0.227798i
\(926\) 16.0000 0.525793
\(927\) 0 0
\(928\) 8.00000 0.262613
\(929\) −15.0000 + 25.9808i −0.492134 + 0.852401i −0.999959 0.00905914i \(-0.997116\pi\)
0.507825 + 0.861460i \(0.330450\pi\)
\(930\) 10.3923i 0.340777i
\(931\) 4.50000 + 7.79423i 0.147482 + 0.255446i
\(932\) −7.50000 12.9904i −0.245671 0.425514i
\(933\) 41.5692i 1.36092i
\(934\) −3.50000 + 6.06218i −0.114523 + 0.198361i
\(935\) −5.00000 −0.163517
\(936\) −1.50000 + 2.59808i −0.0490290 + 0.0849208i
\(937\) −54.0000 −1.76410 −0.882052 0.471153i \(-0.843838\pi\)
−0.882052 + 0.471153i \(0.843838\pi\)
\(938\) 15.0000 25.9808i 0.489767 0.848302i
\(939\) −13.5000 + 7.79423i −0.440556 + 0.254355i
\(940\) −6.00000 10.3923i −0.195698 0.338960i
\(941\) −19.0000 32.9090i −0.619382 1.07280i −0.989599 0.143856i \(-0.954050\pi\)
0.370216 0.928946i \(-0.379284\pi\)
\(942\) 33.0000 + 19.0526i 1.07520 + 0.620766i
\(943\) 0 0
\(944\) −5.00000 −0.162736
\(945\) 10.3923i 0.338062i
\(946\) 5.00000 0.162564
\(947\) −21.5000 + 37.2391i −0.698656 + 1.21011i 0.270276 + 0.962783i \(0.412885\pi\)
−0.968933 + 0.247325i \(0.920448\pi\)
\(948\) 3.00000 + 1.73205i 0.0974355 + 0.0562544i
\(949\) −5.50000 9.52628i −0.178538 0.309236i
\(950\) −1.50000 2.59808i −0.0486664 0.0842927i
\(951\) −27.0000 + 15.5885i −0.875535 + 0.505490i
\(952\) −5.00000 + 8.66025i −0.162051 + 0.280680i
\(953\) 57.0000 1.84641 0.923206 0.384307i \(-0.125559\pi\)
0.923206 + 0.384307i \(0.125559\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 1.00000 1.73205i 0.0323423 0.0560185i
\(957\) 13.8564i 0.447914i
\(958\) −4.00000 6.92820i −0.129234 0.223840i
\(959\) −3.00000 5.19615i −0.0968751 0.167793i
\(960\) 1.73205i 0.0559017i
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) 8.00000 0.257930
\(963\) 13.5000 + 23.3827i 0.435031 + 0.753497i
\(964\) −1.00000 −0.0322078
\(965\) −6.50000 + 11.2583i −0.209242 + 0.362418i
\(966\) 0 0
\(967\) −8.00000 13.8564i −0.257263 0.445592i 0.708245 0.705967i \(-0.249487\pi\)
−0.965508 + 0.260375i \(0.916154\pi\)
\(968\) 5.00000 + 8.66025i 0.160706 + 0.278351i
\(969\) 22.5000 + 12.9904i 0.722804 + 0.417311i
\(970\) −6.50000 + 11.2583i −0.208702 + 0.361483i
\(971\) −16.0000 −0.513464 −0.256732 0.966483i \(-0.582646\pi\)
−0.256732 + 0.966483i \(0.582646\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) 14.0000 0.448819
\(974\) 17.0000 29.4449i 0.544715 0.943474i
\(975\) −1.50000 0.866025i −0.0480384 0.0277350i
\(976\) −7.00000 12.1244i −0.224065 0.388091i
\(977\) −1.50000 2.59808i −0.0479893 0.0831198i 0.841033 0.540984i \(-0.181948\pi\)
−0.889022 + 0.457864i \(0.848615\pi\)
\(978\) 24.0000 13.8564i 0.767435 0.443079i
\(979\) −5.00000 + 8.66025i −0.159801 + 0.276783i
\(980\) 3.00000 0.0958315
\(981\) 9.00000 + 15.5885i 0.287348 + 0.497701i
\(982\) 3.00000 0.0957338
\(983\) 14.0000 24.2487i 0.446531 0.773414i −0.551627 0.834091i \(-0.685993\pi\)
0.998157 + 0.0606773i \(0.0193260\pi\)
\(984\) 12.1244i 0.386510i
\(985\) 9.00000 + 15.5885i 0.286764 + 0.496690i
\(986\) −20.0000 34.6410i −0.636930 1.10319i
\(987\) 41.5692i 1.32316i
\(988\) 1.50000 2.59808i 0.0477214 0.0826558i
\(989\) 0 0
\(990\) 3.00000 0.0953463
\(991\) −30.0000 −0.952981 −0.476491 0.879180i \(-0.658091\pi\)
−0.476491 + 0.879180i \(0.658091\pi\)
\(992\) −3.00000 + 5.19615i −0.0952501 + 0.164978i
\(993\) 30.0000 17.3205i 0.952021 0.549650i
\(994\) 2.00000 + 3.46410i 0.0634361 + 0.109875i
\(995\) 9.00000 + 15.5885i 0.285319 + 0.494187i
\(996\) −18.0000 10.3923i −0.570352 0.329293i
\(997\) 28.0000 48.4974i 0.886769 1.53593i 0.0430962 0.999071i \(-0.486278\pi\)
0.843673 0.536858i \(-0.180389\pi\)
\(998\) 11.0000 0.348199
\(999\) 41.5692i 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.j.c.781.1 yes 2
3.2 odd 2 3510.2.j.e.2341.1 2
9.4 even 3 inner 1170.2.j.c.391.1 2
9.5 odd 6 3510.2.j.e.1171.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.j.c.391.1 2 9.4 even 3 inner
1170.2.j.c.781.1 yes 2 1.1 even 1 trivial
3510.2.j.e.1171.1 2 9.5 odd 6
3510.2.j.e.2341.1 2 3.2 odd 2