Properties

Label 2.43.f_as
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 43 x^{2} )( 1 + 13 x + 43 x^{2} )$
  $1 + 5 x - 18 x^{2} + 215 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.291171725172$, $\pm0.957838391839$
Angle rank:  $1$ (numerical)
Jacobians:  $13$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2052$ $3307824$ $6404480784$ $11688275491776$ $21614786686180332$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $49$ $1789$ $80548$ $3418825$ $147030919$ $6321140278$ $271818201613$ $11688193440529$ $502592645091004$ $21611482524392989$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 13 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43^{3}}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.ai $\times$ 1.43.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{43}$
The base change of $A$ to $\F_{43^{3}}$ is 1.79507.ua 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.av_hi$2$(not in LMFDB)
2.43.af_as$2$(not in LMFDB)
2.43.v_hi$2$(not in LMFDB)
2.43.aq_fu$3$(not in LMFDB)
2.43.an_ew$3$(not in LMFDB)
2.43.ak_eh$3$(not in LMFDB)
2.43.i_v$3$(not in LMFDB)
2.43.ba_jv$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.av_hi$2$(not in LMFDB)
2.43.af_as$2$(not in LMFDB)
2.43.v_hi$2$(not in LMFDB)
2.43.aq_fu$3$(not in LMFDB)
2.43.an_ew$3$(not in LMFDB)
2.43.ak_eh$3$(not in LMFDB)
2.43.i_v$3$(not in LMFDB)
2.43.ba_jv$3$(not in LMFDB)
2.43.aba_jv$6$(not in LMFDB)
2.43.as_fv$6$(not in LMFDB)
2.43.ai_v$6$(not in LMFDB)
2.43.ad_bu$6$(not in LMFDB)
2.43.a_adf$6$(not in LMFDB)
2.43.a_w$6$(not in LMFDB)
2.43.a_cj$6$(not in LMFDB)
2.43.d_bu$6$(not in LMFDB)
2.43.k_eh$6$(not in LMFDB)
2.43.n_ew$6$(not in LMFDB)
2.43.q_fu$6$(not in LMFDB)
2.43.s_fv$6$(not in LMFDB)
2.43.a_acj$12$(not in LMFDB)
2.43.a_aw$12$(not in LMFDB)
2.43.a_df$12$(not in LMFDB)