Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 43 x^{2} )( 1 + 13 x + 43 x^{2} )$ |
$1 + 5 x - 18 x^{2} + 215 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.291171725172$, $\pm0.957838391839$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $13$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2052$ | $3307824$ | $6404480784$ | $11688275491776$ | $21614786686180332$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $49$ | $1789$ | $80548$ | $3418825$ | $147030919$ | $6321140278$ | $271818201613$ | $11688193440529$ | $502592645091004$ | $21611482524392989$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 13 curves (of which all are hyperelliptic):
- $y^2=19 x^6+34 x^5+23 x^4+29 x^3+8 x^2+41 x+13$
- $y^2=27 x^6+33 x^5+41 x^4+37 x^3+2 x^2+19 x+11$
- $y^2=x^6+3 x^3+15$
- $y^2=34 x^6+18 x^5+31 x^4+38 x^3+32 x^2+39 x+21$
- $y^2=37 x^6+7 x^5+6 x^4+12 x^3+13 x^2+32 x+16$
- $y^2=26 x^6+41 x^5+15 x^4+22 x^3+37 x+26$
- $y^2=15 x^6+32 x^5+6 x^4+29 x^3+2 x^2+8 x+37$
- $y^2=25 x^6+16 x^5+11 x^4+41 x^3+16 x^2+25 x+17$
- $y^2=22 x^6+7 x^5+23 x^4+22 x^3+40 x^2+34 x+39$
- $y^2=38 x^6+20 x^5+22 x^4+17 x^3+38 x^2+29 x+18$
- $y^2=21 x^6+12 x^5+36 x^4+30 x^3+30 x^2+17 x+35$
- $y^2=25 x^6+36 x^5+10 x^4+20 x^3+32 x^2+13 x+9$
- $y^2=35 x^6+9 x^5+7 x^4+20 x^3+28 x^2+22 x+41$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{3}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ai $\times$ 1.43.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{3}}$ is 1.79507.ua 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.