| L(s) = 1 | − 2·5-s + 2·9-s + 4·13-s + 4·17-s + 3·25-s − 12·29-s + 20·37-s + 4·41-s − 4·45-s − 6·49-s − 12·53-s + 4·61-s − 8·65-s − 12·73-s − 5·81-s − 8·85-s + 20·89-s + 4·97-s + 4·101-s + 36·109-s + 4·113-s + 8·117-s + 10·121-s − 4·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | − 0.894·5-s + 2/3·9-s + 1.10·13-s + 0.970·17-s + 3/5·25-s − 2.22·29-s + 3.28·37-s + 0.624·41-s − 0.596·45-s − 6/7·49-s − 1.64·53-s + 0.512·61-s − 0.992·65-s − 1.40·73-s − 5/9·81-s − 0.867·85-s + 2.11·89-s + 0.406·97-s + 0.398·101-s + 3.44·109-s + 0.376·113-s + 0.739·117-s + 0.909·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.437687236\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.437687236\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54096329063596514712291905022, −11.53817667191451373632568628568, −11.03111970956455570875612605421, −10.63652798535804361642446776952, −9.862515474013922215550479093911, −9.626869907218388433642260600245, −9.096978939488460814703141204352, −8.519721980105615848195832680186, −7.943670102081038157537312274234, −7.48765597332836045376350376470, −7.42867144191638870823373674443, −6.38912401683433574009480666981, −6.06943653388910276154682339658, −5.51245569181223824742894392200, −4.59789173031085180214409789496, −4.27226961306955603738878899232, −3.54943286150140438787827956806, −3.12925247737475439352160521810, −1.95006760437674357452119030431, −0.942019062778363645446364015230,
0.942019062778363645446364015230, 1.95006760437674357452119030431, 3.12925247737475439352160521810, 3.54943286150140438787827956806, 4.27226961306955603738878899232, 4.59789173031085180214409789496, 5.51245569181223824742894392200, 6.06943653388910276154682339658, 6.38912401683433574009480666981, 7.42867144191638870823373674443, 7.48765597332836045376350376470, 7.943670102081038157537312274234, 8.519721980105615848195832680186, 9.096978939488460814703141204352, 9.626869907218388433642260600245, 9.862515474013922215550479093911, 10.63652798535804361642446776952, 11.03111970956455570875612605421, 11.53817667191451373632568628568, 11.54096329063596514712291905022