L(s) = 1 | + 5·9-s − 2·17-s + 8·23-s − 25-s − 18·31-s + 4·41-s − 6·47-s − 14·49-s − 6·71-s + 22·73-s − 16·79-s + 16·81-s + 18·89-s + 6·97-s + 16·103-s + 6·113-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 10·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 5/3·9-s − 0.485·17-s + 1.66·23-s − 1/5·25-s − 3.23·31-s + 0.624·41-s − 0.875·47-s − 2·49-s − 0.712·71-s + 2.57·73-s − 1.80·79-s + 16/9·81-s + 1.90·89-s + 0.609·97-s + 1.57·103-s + 0.564·113-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.808·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7398400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7398400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.450737204\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.450737204\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.944621350434959615591263331015, −8.908365419700544484129114934704, −8.183692890355370779934742926015, −7.78668781686018651416646761461, −7.33153340398582594922179037265, −7.32111507173789028749049300571, −6.70859969855580654523154540037, −6.52660317470314166122616974951, −6.01323302240018168665109945184, −5.43494525237759103717233504515, −4.96509426598907321956193315599, −4.88972634437902777351134835263, −4.20091742291819306109193994246, −3.91158182134311978715125473496, −3.33226378840405646559216960388, −3.09666320893612862514469280444, −2.13003096240094112475967479812, −1.85152636642657626779820415610, −1.34066626187505800036144011046, −0.52314186311900854171087295113,
0.52314186311900854171087295113, 1.34066626187505800036144011046, 1.85152636642657626779820415610, 2.13003096240094112475967479812, 3.09666320893612862514469280444, 3.33226378840405646559216960388, 3.91158182134311978715125473496, 4.20091742291819306109193994246, 4.88972634437902777351134835263, 4.96509426598907321956193315599, 5.43494525237759103717233504515, 6.01323302240018168665109945184, 6.52660317470314166122616974951, 6.70859969855580654523154540037, 7.32111507173789028749049300571, 7.33153340398582594922179037265, 7.78668781686018651416646761461, 8.183692890355370779934742926015, 8.908365419700544484129114934704, 8.944621350434959615591263331015