Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 97 x^{2} )^{2}$ |
$1 - 6 x + 203 x^{2} - 582 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.451331388283$, $\pm0.451331388283$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $51$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9025$ | $92064025$ | $834518790400$ | $7834706067515625$ | $73740209503583400625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $9780$ | $914366$ | $88498468$ | $8587083692$ | $832974224190$ | $80798316022796$ | $7837433473742788$ | $760231055232828542$ | $73742412690929130900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 51 curves (of which all are hyperelliptic):
- $y^2=67 x^6+20 x^5+12 x^4+3 x^3+6 x^2+37 x+36$
- $y^2=24 x^6+6 x^5+19 x^4+41 x^3+58 x^2+70 x+17$
- $y^2=20 x^6+71 x^5+12 x^4+60 x^3+73 x^2+72 x+75$
- $y^2=82 x^6+56 x^5+80 x^4+59 x^3+13 x^2+76 x+55$
- $y^2=67 x^6+63 x^5+65 x^4+95 x^3+94 x^2+54 x+62$
- $y^2=29 x^6+96 x^5+28 x^4+41 x^3+24 x^2+22 x+28$
- $y^2=23 x^6+36 x^4+15 x^3+62 x^2+23$
- $y^2=28 x^6+18 x^5+13 x^4+67 x^3+39 x^2+65 x+77$
- $y^2=10 x^6+72 x^5+90 x^4+91 x^3+28 x^2+17 x+61$
- $y^2=35 x^6+30 x^5+88 x^4+29 x^3+80 x^2+89 x+52$
- $y^2=52 x^6+28 x^5+80 x^4+76 x^3+82 x^2+85 x+87$
- $y^2=70 x^6+21 x^5+63 x^4+57 x^3+49 x^2+90 x+95$
- $y^2=75 x^6+87 x^5+26 x^4+39 x^3+30 x^2+59 x+17$
- $y^2=50 x^6+52 x^5+54 x^4+81 x^3+6 x^2+61 x+37$
- $y^2=86 x^6+51 x^5+18 x^4+61 x^3+24 x^2+26 x+35$
- $y^2=63 x^6+82 x^5+92 x^4+37 x^3+15 x^2+59 x+45$
- $y^2=21 x^6+69 x^5+87 x^4+x^3+12 x^2+61 x+65$
- $y^2=34 x^6+41 x^5+94 x^4+29 x^3+41 x^2+79 x+20$
- $y^2=21 x^6+67 x^5+44 x^4+82 x^3+81 x^2+20 x+76$
- $y^2=38 x^6+47 x^5+6 x^4+59 x^3+93 x^2+64 x+57$
- and 31 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.ad 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-379}) \)$)$ |
Base change
This is a primitive isogeny class.