L(s) = 1 | + 2·3-s + 4·5-s − 2·7-s + 2·9-s − 2·11-s + 8·15-s + 2·17-s + 4·19-s − 4·21-s − 2·23-s + 2·25-s + 6·27-s + 4·29-s + 2·31-s − 4·33-s − 8·35-s − 4·37-s + 4·41-s + 12·43-s + 8·45-s − 8·47-s − 6·49-s + 4·51-s − 4·53-s − 8·55-s + 8·57-s − 20·59-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.78·5-s − 0.755·7-s + 2/3·9-s − 0.603·11-s + 2.06·15-s + 0.485·17-s + 0.917·19-s − 0.872·21-s − 0.417·23-s + 2/5·25-s + 1.15·27-s + 0.742·29-s + 0.359·31-s − 0.696·33-s − 1.35·35-s − 0.657·37-s + 0.624·41-s + 1.82·43-s + 1.19·45-s − 1.16·47-s − 6/7·49-s + 0.560·51-s − 0.549·53-s − 1.07·55-s + 1.05·57-s − 2.60·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 73984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.677731571\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.677731571\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.48856928227859852307148802935, −11.67358976323158480949015852791, −11.13712097916083713944755017265, −10.37247261907585513200028846242, −10.09932288963077603501628345531, −9.778384238222595061467140633825, −9.256892817145036237099022650492, −9.117821161770955834747579532639, −8.114884718896373013616156203111, −8.074541144363053444368778372887, −7.26532214798757090733578192429, −6.69345499335150516305026557026, −6.01681727017416252108927888744, −5.80387098886009721381694034758, −5.04509368732520633281911845185, −4.36771464994201450096785652791, −3.32584481261578245160488299107, −2.93544302415270856064158848348, −2.29602170294392146313536467747, −1.45395524885242083018695564650,
1.45395524885242083018695564650, 2.29602170294392146313536467747, 2.93544302415270856064158848348, 3.32584481261578245160488299107, 4.36771464994201450096785652791, 5.04509368732520633281911845185, 5.80387098886009721381694034758, 6.01681727017416252108927888744, 6.69345499335150516305026557026, 7.26532214798757090733578192429, 8.074541144363053444368778372887, 8.114884718896373013616156203111, 9.117821161770955834747579532639, 9.256892817145036237099022650492, 9.778384238222595061467140633825, 10.09932288963077603501628345531, 10.37247261907585513200028846242, 11.13712097916083713944755017265, 11.67358976323158480949015852791, 12.48856928227859852307148802935