Invariants
Base field: | $\F_{7}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 10 x^{2} + 14 x^{3} + 49 x^{4}$ |
Frobenius angles: | $\pm0.424951050725$, $\pm0.709457448494$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.11600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $6$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $76$ | $3344$ | $114076$ | $5831936$ | $277845436$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $10$ | $66$ | $334$ | $2430$ | $16530$ | $117282$ | $827158$ | $5763774$ | $40338298$ | $282483586$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=2 x^6+4 x^4+3 x^3+6 x^2+3 x+5$
- $y^2=4 x^6+x^5+3 x^4+2 x^3+2 x^2+4$
- $y^2=5 x^6+5 x^5+2 x^4+4 x^3+3 x$
- $y^2=2 x^6+4 x^5+5 x^4+5 x^3+6 x^2+5 x+4$
- $y^2=6 x^6+5 x^4+6 x^3+x^2+3 x+4$
- $y^2=5 x^5+6 x^4+3 x^3+5 x^2+3 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{7}$.
Endomorphism algebra over $\F_{7}$The endomorphism algebra of this simple isogeny class is 4.0.11600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.7.ac_k | $2$ | 2.49.q_fm |