Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 24 x + 302 x^{2} + 2136 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.630634325920$, $\pm0.837842632776$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.39600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $156$ |
Isomorphism classes: | 288 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10384$ | $62968576$ | $495916673296$ | $3937106688159744$ | $31181768305021963024$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $114$ | $7950$ | $703458$ | $62750494$ | $5584068114$ | $496981598766$ | $44231319241986$ | $3936589004559934$ | $350356402936170162$ | $31181719919420527950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=82 x^6+24 x^5+4 x^4+59 x^3+56 x^2+71 x+2$
- $y^2=31 x^6+73 x^5+40 x^4+7 x^3+15 x^2+83 x+88$
- $y^2=13 x^6+75 x^5+23 x^4+22 x^3+44 x^2+51 x+1$
- $y^2=9 x^6+61 x^5+65 x^4+17 x^3+12 x^2+52 x+15$
- $y^2=52 x^6+52 x^5+16 x^4+44 x^3+25 x^2+38 x+77$
- $y^2=66 x^6+39 x^5+3 x^4+67 x^3+46 x^2+44 x+10$
- $y^2=70 x^6+71 x^5+40 x^4+21 x^3+3 x^2+5 x+6$
- $y^2=24 x^6+42 x^5+8 x^4+63 x^3+69 x^2+62 x+7$
- $y^2=4 x^6+32 x^5+14 x^4+38 x^3+82 x^2+42 x+25$
- $y^2=54 x^6+84 x^5+43 x^4+63 x^3+65 x^2+52 x+81$
- $y^2=28 x^6+37 x^5+26 x^4+28 x^3+57 x^2+23 x+62$
- $y^2=57 x^6+52 x^5+57 x^4+13 x^3+71 x^2+52 x+12$
- $y^2=64 x^6+77 x^5+85 x^4+59 x^3+46 x^2+38 x+60$
- $y^2=75 x^6+79 x^5+84 x^4+72 x^3+43 x^2+42 x+14$
- $y^2=30 x^6+55 x^5+32 x^4+13 x^3+83 x^2+51 x+81$
- $y^2=54 x^6+30 x^5+35 x^4+23 x^3+55 x^2+27 x+16$
- $y^2=11 x^6+32 x^5+73 x^4+49 x^3+75 x^2+36 x+78$
- $y^2=87 x^6+12 x^5+73 x^4+23 x^3+16 x^2+85 x+5$
- $y^2=81 x^6+13 x^5+47 x^4+54 x^3+73 x^2+8 x+12$
- $y^2=79 x^6+83 x^5+47 x^4+12 x^3+16 x^2+40 x+42$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.39600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.ay_lq | $2$ | (not in LMFDB) |