-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10384, 'abvar_counts': [10384, 62968576, 495916673296, 3937106688159744, 31181768305021963024, 246990556537544206410496, 1956410294263425726973642384, 15496732208000547688532841529344, 122749609348607189953832767825630096, 972299657462018617005087375008786834176], 'abvar_counts_str': '10384 62968576 495916673296 3937106688159744 31181768305021963024 246990556537544206410496 1956410294263425726973642384 15496732208000547688532841529344 122749609348607189953832767825630096 972299657462018617005087375008786834176 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.630634325920293, 0.8378426327764], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 114, 'curve_counts': [114, 7950, 703458, 62750494, 5584068114, 496981598766, 44231319241986, 3936589004559934, 350356402936170162, 31181719919420527950], 'curve_counts_str': '114 7950 703458 62750494 5584068114 496981598766 44231319241986 3936589004559934 350356402936170162 31181719919420527950 ', 'curves': ['y^2=82*x^6+24*x^5+4*x^4+59*x^3+56*x^2+71*x+2', 'y^2=31*x^6+73*x^5+40*x^4+7*x^3+15*x^2+83*x+88', 'y^2=13*x^6+75*x^5+23*x^4+22*x^3+44*x^2+51*x+1', 'y^2=9*x^6+61*x^5+65*x^4+17*x^3+12*x^2+52*x+15', 'y^2=52*x^6+52*x^5+16*x^4+44*x^3+25*x^2+38*x+77', 'y^2=66*x^6+39*x^5+3*x^4+67*x^3+46*x^2+44*x+10', 'y^2=70*x^6+71*x^5+40*x^4+21*x^3+3*x^2+5*x+6', 'y^2=24*x^6+42*x^5+8*x^4+63*x^3+69*x^2+62*x+7', 'y^2=4*x^6+32*x^5+14*x^4+38*x^3+82*x^2+42*x+25', 'y^2=54*x^6+84*x^5+43*x^4+63*x^3+65*x^2+52*x+81', 'y^2=28*x^6+37*x^5+26*x^4+28*x^3+57*x^2+23*x+62', 'y^2=57*x^6+52*x^5+57*x^4+13*x^3+71*x^2+52*x+12', 'y^2=64*x^6+77*x^5+85*x^4+59*x^3+46*x^2+38*x+60', 'y^2=75*x^6+79*x^5+84*x^4+72*x^3+43*x^2+42*x+14', 'y^2=30*x^6+55*x^5+32*x^4+13*x^3+83*x^2+51*x+81', 'y^2=54*x^6+30*x^5+35*x^4+23*x^3+55*x^2+27*x+16', 'y^2=11*x^6+32*x^5+73*x^4+49*x^3+75*x^2+36*x+78', 'y^2=87*x^6+12*x^5+73*x^4+23*x^3+16*x^2+85*x+5', 'y^2=81*x^6+13*x^5+47*x^4+54*x^3+73*x^2+8*x+12', 'y^2=79*x^6+83*x^5+47*x^4+12*x^3+16*x^2+40*x+42', 'y^2=6*x^6+6*x^5+26*x^3+22*x^2+56*x+50', 'y^2=4*x^6+25*x^5+35*x^4+36*x^3+33*x^2+32*x+81', 'y^2=3*x^6+58*x^5+44*x^4+36*x^3+35*x^2+23*x+33', 'y^2=88*x^6+14*x^5+48*x^4+5*x^3+22*x^2+67*x+8', 'y^2=28*x^6+41*x^5+2*x^4+49*x^3+84*x^2+66*x+34', 'y^2=80*x^5+76*x^4+68*x^3+72*x^2+51*x+11', 'y^2=8*x^6+18*x^5+66*x^4+4*x^3+18*x^2+77*x+71', 'y^2=55*x^6+61*x^5+41*x^4+66*x^3+83*x^2+4*x+6', 'y^2=50*x^6+56*x^5+75*x^4+31*x^3+50*x^2+53*x+70', 'y^2=47*x^6+11*x^5+85*x^4+31*x^3+28*x^2+71*x+42', 'y^2=79*x^6+85*x^5+5*x^4+36*x^3+45*x^2+25*x+76', 'y^2=79*x^6+86*x^5+6*x^4+39*x^3+53*x^2+23*x+28', 'y^2=53*x^6+4*x^5+48*x^4+22*x^3+41*x^2+60*x+34', 'y^2=57*x^6+10*x^5+47*x^4+2*x^3+55*x^2+55*x+80', 'y^2=58*x^6+13*x^5+80*x^4+64*x^3+74*x^2+32*x+79', 'y^2=29*x^6+16*x^5+19*x^4+31*x^3+48*x+10', 'y^2=79*x^6+85*x^5+45*x^4+28*x^3+55*x^2+22*x+22', 'y^2=66*x^6+37*x^5+54*x^4+2*x^3+82*x^2+79*x+56', 'y^2=28*x^6+62*x^5+34*x^4+63*x^3+61*x^2+28*x+85', 'y^2=43*x^6+41*x^5+37*x^4+72*x^3+87*x^2+55*x+79', 'y^2=53*x^6+80*x^5+4*x^4+79*x^3+19*x^2+51*x+9', 'y^2=50*x^6+84*x^5+59*x^4+85*x^3+44*x^2+35*x+57', 'y^2=34*x^6+24*x^5+73*x^4+61*x^3+85*x^2+9*x+2', 'y^2=35*x^6+26*x^5+18*x^4+49*x^3+30*x^2+33*x+14', 'y^2=62*x^6+41*x^5+83*x^4+12*x^3+60*x^2+43*x+50', 'y^2=23*x^6+48*x^5+23*x^4+69*x^3+85*x^2+2*x+4', 'y^2=42*x^6+12*x^5+54*x^4+17*x^3+69*x^2+56*x+83', 'y^2=18*x^6+87*x^5+55*x^4+38*x^3+40*x^2+52*x+15', 'y^2=18*x^6+24*x^5+40*x^4+11*x^3+7*x^2+79*x+19', 'y^2=5*x^6+70*x^5+40*x^4+88*x^3+10*x^2+x+11', 'y^2=68*x^6+74*x^5+64*x^4+46*x^3+23*x^2+10*x+27', 'y^2=21*x^6+65*x^5+63*x^4+34*x^3+12*x^2+14*x+17', 'y^2=46*x^6+21*x^5+8*x^4+61*x^3+20*x^2+3*x', 'y^2=79*x^6+21*x^5+44*x^4+62*x^3+37*x^2+3*x+73', 'y^2=44*x^6+28*x^5+32*x^4+54*x^3+87*x^2+68*x+31', 'y^2=58*x^6+82*x^5+67*x^4+78*x^3+71*x^2+78*x+33', 'y^2=49*x^6+3*x^5+37*x^4+41*x^3+45*x^2+88*x+83', 'y^2=25*x^6+66*x^5+19*x^4+30*x^3+14*x^2+70*x+71', 'y^2=40*x^6+85*x^5+7*x^4+2*x^3+79*x^2+43*x+36', 'y^2=20*x^6+33*x^5+88*x^4+48*x^3+37*x^2+69*x+81', 'y^2=29*x^5+25*x^4+32*x^3+49*x^2+14*x+18', 'y^2=68*x^6+x^5+70*x^4+79*x^3+48*x^2+80', 'y^2=22*x^6+48*x^5+69*x^4+55*x^3+28*x^2+34*x+8', 'y^2=11*x^6+62*x^5+47*x^4+61*x^3+32*x^2+45*x+71', 'y^2=82*x^6+46*x^5+75*x^4+11*x^3+19*x^2+53*x+7', 'y^2=40*x^6+48*x^5+45*x^4+21*x^3+6*x^2+30*x+86', 'y^2=64*x^6+70*x^5+81*x^4+8*x^3+64*x^2+9*x+40', 'y^2=47*x^6+36*x^5+37*x^4+39*x^3+80*x^2+63*x+44', 'y^2=33*x^6+55*x^5+77*x^4+17*x^3+37*x^2+40*x+65', 'y^2=49*x^6+14*x^5+88*x^4+56*x^3+75*x^2+48*x+74', 'y^2=54*x^6+53*x^5+5*x^4+19*x^3+18*x^2+48*x+28', 'y^2=36*x^6+30*x^5+21*x^4+45*x^3+82*x^2+13*x+80', 'y^2=43*x^6+33*x^5+59*x^4+88*x^3+47*x^2+64*x+4', 'y^2=57*x^6+38*x^5+42*x^4+x^3+42*x^2+74*x+77', 'y^2=26*x^6+58*x^5+10*x^4+78*x^3+48*x^2+54*x+85', 'y^2=27*x^6+87*x^5+59*x^4+21*x^3+80*x^2+69', 'y^2=79*x^6+13*x^5+11*x^4+63*x^3+26*x^2+6*x+17', 'y^2=78*x^6+11*x^5+54*x^4+54*x^3+23*x^2+37*x+31', 'y^2=44*x^6+80*x^5+26*x^4+57*x^3+77*x^2+45*x+53', 'y^2=25*x^6+56*x^5+26*x^4+15*x^3+37*x^2+41*x+8', 'y^2=28*x^6+17*x^5+73*x^4+66*x^3+73*x^2+23*x+87', 'y^2=85*x^6+76*x^5+77*x^4+56*x^3+73*x^2+31*x+17', 'y^2=86*x^6+43*x^5+16*x^4+58*x^3+10*x^2+26*x+19', 'y^2=31*x^6+78*x^5+47*x^4+7*x^3+11*x^2+67*x+67', 'y^2=2*x^6+33*x^5+42*x^4+11*x^3+5*x^2+37*x+26', 'y^2=11*x^6+45*x^5+71*x^4+17*x^3+70*x^2+50*x+47', 'y^2=88*x^6+62*x^5+88*x^4+58*x^3+69*x^2+11*x+54', 'y^2=73*x^6+25*x^5+70*x^4+50*x^3+68*x^2+68*x+49', 'y^2=23*x^6+39*x^5+74*x^4+60*x^3+49*x^2+41*x+30', 'y^2=38*x^6+19*x^5+69*x^4+81*x^3+15*x^2+15*x+35', 'y^2=55*x^6+12*x^5+31*x^4+52*x^3+26*x^2+27*x+32', 'y^2=36*x^6+53*x^5+69*x^4+21*x^3+51*x^2+15*x+7', 'y^2=67*x^6+72*x^5+69*x^4+33*x^3+62*x^2+48*x+18', 'y^2=40*x^6+55*x^5+16*x^4+31*x^3+51*x^2+74*x+47', 'y^2=61*x^6+6*x^5+88*x^4+14*x^2+37*x+41', 'y^2=82*x^6+61*x^5+32*x^4+25*x^3+72*x^2+40*x+20', 'y^2=11*x^6+41*x^5+40*x^4+76*x^3+66*x^2+22*x+44', 'y^2=78*x^6+26*x^5+43*x^4+47*x^3+18*x^2+44*x+18', 'y^2=32*x^6+71*x^5+60*x^4+33*x^3+27*x^2+59*x+84', 'y^2=69*x^6+86*x^5+78*x^4+9*x^3+70*x^2+30*x+63', 'y^2=67*x^6+56*x^5+2*x^4+21*x^3+78*x^2+50*x+1', 'y^2=13*x^6+84*x^4+45*x^3+13*x^2+77*x+11', 'y^2=74*x^6+83*x^5+27*x^4+21*x^3+75*x^2+51*x+17', 'y^2=82*x^6+80*x^5+16*x^4+63*x^3+8*x^2+75*x+81', 'y^2=65*x^6+36*x^5+59*x^4+21*x^3+19*x^2+16*x+19', 'y^2=45*x^6+45*x^5+43*x^4+6*x^3+23*x^2+39*x+64', 'y^2=57*x^6+51*x^5+9*x^4+3*x^3+86*x^2+6*x+50', 'y^2=62*x^6+59*x^5+x^4+32*x^3+4*x^2+39*x+55', 'y^2=87*x^6+42*x^5+63*x^4+81*x^3+17*x^2+88*x+10', 'y^2=69*x^6+58*x^5+60*x^4+42*x^3+37*x^2+64*x+10', 'y^2=37*x^6+46*x^5+88*x^4+83*x^3+27*x^2+69*x+14', 'y^2=42*x^6+51*x^5+10*x^4+43*x^3+31*x^2+77*x+16', 'y^2=39*x^6+43*x^5+73*x^4+42*x^3+80*x^2+21*x+87', 'y^2=74*x^6+86*x^5+4*x^4+46*x^3+46*x^2+65*x+35', 'y^2=73*x^6+15*x^5+64*x^4+58*x^3+75*x^2+72*x+3', 'y^2=78*x^6+3*x^5+79*x^4+72*x^3+87*x^2+33*x+67', 'y^2=17*x^6+80*x^5+68*x^4+16*x^3+30*x^2+76*x+67', 'y^2=48*x^6+46*x^5+15*x^4+60*x^3+83*x^2+65*x+25', 'y^2=42*x^6+20*x^5+78*x^4+50*x^3+6*x^2+53*x+20', 'y^2=27*x^6+72*x^5+84*x^4+58*x^3+38*x^2+41*x+3', 'y^2=50*x^6+30*x^5+25*x^4+74*x^3+23*x^2+74*x+9', 'y^2=68*x^6+7*x^5+35*x^4+69*x^3+73*x^2+41*x+13', 'y^2=86*x^6+21*x^5+19*x^4+15*x^3+46*x^2+70*x+48', 'y^2=58*x^5+6*x^4+58*x^3+46*x^2+64*x+55', 'y^2=19*x^6+66*x^5+64*x^4+8*x^2+43*x+84', 'y^2=28*x^6+74*x^5+2*x^4+85*x^3+48*x^2+3*x+49', 'y^2=22*x^6+29*x^5+60*x^4+18*x^3+83*x^2+9*x+66', 'y^2=69*x^6+87*x^5+56*x^4+76*x^3+57*x^2+18*x+22', 'y^2=27*x^6+85*x^5+41*x^4+88*x^3+77*x^2+58*x+65', 'y^2=40*x^6+78*x^5+64*x^4+37*x^3+80*x^2+38*x+72', 'y^2=26*x^6+24*x^5+32*x^4+8*x^3+3*x^2+23*x+76', 'y^2=54*x^6+13*x^5+40*x^4+30*x^3+26*x^2+8*x+41', 'y^2=28*x^6+45*x^5+29*x^4+71*x^3+3*x^2+20*x+27', 'y^2=42*x^6+47*x^5+64*x^4+86*x^3+64*x+20', 'y^2=39*x^6+45*x^5+86*x^4+26*x^3+56*x^2+78*x+58', 'y^2=87*x^6+49*x^5+88*x^4+61*x^3+19*x^2+52*x+64', 'y^2=74*x^6+80*x^5+81*x^4+44*x^3+23*x^2+74*x+40', 'y^2=39*x^6+30*x^5+48*x^4+41*x^3+70*x^2+40*x+4', 'y^2=17*x^6+67*x^5+9*x^4+65*x^3+20*x^2+85*x+73', 'y^2=30*x^6+5*x^5+46*x^4+87*x^3+85*x^2+76*x+25', 'y^2=16*x^6+58*x^5+29*x^4+64*x^3+65*x^2+14*x+75', 'y^2=x^6+70*x^5+73*x^4+68*x^3+65*x^2+39*x+48', 'y^2=46*x^6+15*x^5+9*x^4+61*x^3+69*x^2+64*x+39', 'y^2=66*x^6+20*x^5+9*x^4+17*x^3+62*x^2+79*x+45', 'y^2=73*x^6+6*x^5+66*x^4+80*x^3+44*x^2+26*x+21', 'y^2=69*x^6+74*x^5+84*x^4+46*x^3+42*x^2+44*x+66', 'y^2=67*x^6+30*x^5+7*x^4+37*x^3+58*x^2+79*x+56', 'y^2=80*x^6+70*x^5+67*x^4+50*x^3+52*x^2+40*x+52', 'y^2=28*x^6+88*x^5+35*x^4+47*x^3+39*x^2+65*x+76', 'y^2=19*x^6+60*x^5+60*x^4+4*x^3+21*x^2+81*x+5', 'y^2=x^5+44*x^4+54*x^3+71*x^2+87*x+10', 'y^2=86*x^6+26*x^5+4*x^4+9*x^3+12*x^2+61*x+59', 'y^2=35*x^6+50*x^5+70*x^4+41*x^3+17*x^2+28*x+78', 'y^2=58*x^6+24*x^5+49*x^4+6*x^3+80*x^2+31*x+56', 'y^2=5*x^6+46*x^5+68*x^4+66*x^3+72*x^2+30*x+61', 'y^2=74*x^6+60*x^5+22*x^4+76*x^3+21*x^2+66*x+64'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.39600.1'], 'geometric_splitting_field': '4.0.39600.1', 'geometric_splitting_polynomials': [[99, 0, 21, 0, 1]], 'group_structure_count': 5, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 156, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 156, 'label': '2.89.y_lq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.39600.1'], 'p': 89, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 2], [1, 11, 1, 8], [1, 11, 3, 2], [1, 29, 1, 8]], 'poly': [1, 24, 302, 2136, 7921], 'poly_str': '1 24 302 2136 7921 ', 'primitive_models': [], 'principal_polarization_count': 156, 'q': 89, 'real_poly': [1, 24, 124], 'simple_distinct': ['2.89.y_lq'], 'simple_factors': ['2.89.y_lqA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2+7*F+2*V+48'], 'size': 288, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.39600.1', 'splitting_polynomials': [[99, 0, 21, 0, 1]], 'twist_count': 2, 'twists': [['2.89.ay_lq', '2.7921.bc_gru', 2]], 'weak_equivalence_count': 15, 'zfv_index': 64, 'zfv_index_factorization': [[2, 6]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 64, 'zfv_plus_index': 4, 'zfv_plus_index_factorization': [[2, 2]], 'zfv_plus_norm': 25344, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F^2+7*F+2*V+48']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.89.y_lq', 'extension_degree': 1, 'extension_label': '2.89.y_lq', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.39600.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.89.y_lq', 'galois_group': '4T3', 'places': [['53', '1', '0', '0'], ['75', '1', '0', '0'], ['36', '1', '0', '0'], ['14', '1', '0', '0']]}