Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x + 186 x^{2} + 994 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.591225890391$, $\pm0.684633382989$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1298000.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6236$ | $26315920$ | $127355464556$ | $645822571685120$ | $3255432015299855116$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $86$ | $5218$ | $355826$ | $25414398$ | $1804333806$ | $128099502658$ | $9095119483466$ | $645753568491198$ | $45848500572572966$ | $3255243550733723298$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=24 x^6+44 x^5+27 x^4+13 x^3+16 x^2+26 x+35$
- $y^2=70 x^6+7 x^5+70 x^4+55 x^3+44 x^2+29 x+16$
- $y^2=56 x^6+57 x^5+35 x^4+23 x^3+7 x^2+36 x+32$
- $y^2=16 x^6+49 x^5+4 x^4+13 x^3+17 x^2+34 x+15$
- $y^2=12 x^6+16 x^5+65 x^4+8 x^3+32 x^2+11 x+28$
- $y^2=31 x^6+61 x^5+17 x^4+34 x^3+46 x^2+9 x+31$
- $y^2=50 x^6+36 x^5+4 x^4+27 x^3+58 x^2+66 x+56$
- $y^2=6 x^6+25 x^5+9 x^4+18 x^3+37 x^2+23 x+2$
- $y^2=35 x^6+43 x^5+5 x^4+2 x^3+8 x^2+21 x+34$
- $y^2=36 x^6+51 x^5+39 x^4+13 x^3+54 x^2+43 x+14$
- $y^2=50 x^6+68 x^5+53 x^4+8 x^3+11 x^2+34 x+27$
- $y^2=34 x^6+x^5+30 x^4+60 x^3+36 x^2+4 x+37$
- $y^2=8 x^6+25 x^5+35 x^4+42 x^3+13 x^2+50 x+44$
- $y^2=60 x^6+62 x^5+30 x^4+27 x^3+44 x^2+39 x+18$
- $y^2=23 x^6+33 x^5+68 x^4+42 x^3+40 x^2+42 x+40$
- $y^2=31 x^6+26 x^5+24 x^4+50 x^3+38 x^2+52 x+37$
- $y^2=20 x^6+59 x^5+24 x^4+26 x^3+58 x^2+57 x+38$
- $y^2=35 x^6+23 x^5+63 x^4+68 x^3+6 x^2+43 x+64$
- $y^2=60 x^6+64 x^5+55 x^4+18 x^3+33 x^2+3 x+33$
- $y^2=14 x^6+54 x^5+62 x^4+17 x^3+60 x^2+33 x+39$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.1298000.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.ao_he | $2$ | (not in LMFDB) |