Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 12 x + 102 x^{2} - 516 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.205630982692$, $\pm0.462832965755$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.16525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $138$ |
Isomorphism classes: | 258 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1424$ | $3531520$ | $6353046416$ | $11687636070400$ | $21613068211529744$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $1910$ | $79904$ | $3418638$ | $147019232$ | $6321602630$ | $271819568864$ | $11688193203358$ | $502592533031072$ | $21611482139206550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 138 curves (of which all are hyperelliptic):
- $y^2=42 x^6+6 x^5+10 x^4+18 x^3+19 x^2+9 x+29$
- $y^2=30 x^6+26 x^5+17 x^4+24 x^3+17 x^2+41 x$
- $y^2=29 x^6+11 x^5+13 x^4+42 x^3+42 x^2+40 x+8$
- $y^2=20 x^6+37 x^5+12 x^4+41 x^3+20 x^2+29 x+30$
- $y^2=14 x^6+3 x^5+9 x^4+12 x^3+16 x^2+3 x+31$
- $y^2=12 x^6+10 x^5+5 x^4+34 x^3+2 x^2+34 x+28$
- $y^2=26 x^6+14 x^5+5 x^4+38 x^3+11 x^2+22 x+8$
- $y^2=19 x^6+13 x^5+41 x^4+11 x^3+26 x^2+24 x+38$
- $y^2=30 x^6+34 x^5+38 x^4+24 x^3+23 x^2+15 x+9$
- $y^2=18 x^6+16 x^5+4 x^4+3 x^3+18 x^2+41 x+5$
- $y^2=31 x^6+20 x^5+34 x^4+30 x^3+29 x^2+29 x+19$
- $y^2=4 x^6+6 x^5+23 x^4+32 x^3+14 x^2+17 x+38$
- $y^2=31 x^6+9 x^5+15 x^4+42 x^3+35 x^2+28 x+39$
- $y^2=27 x^6+7 x^5+3 x^4+17 x^3+36 x^2+20 x+6$
- $y^2=8 x^6+10 x^5+26 x^4+9 x^3+31 x^2+40 x+12$
- $y^2=34 x^5+12 x^4+41 x^3+27 x^2+27 x+21$
- $y^2=26 x^6+36 x^5+7 x^4+12 x^3+12 x^2+11 x+39$
- $y^2=18 x^6+4 x^5+30 x^4+26 x^3+30 x^2+19 x+3$
- $y^2=8 x^6+36 x^5+38 x^4+38 x^3+2 x^2+19 x+7$
- $y^2=2 x^6+22 x^5+41 x^4+3 x^3+34 x^2+25 x+24$
- and 118 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.16525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.m_dy | $2$ | (not in LMFDB) |